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General Notation 

Due to the large number of variables used to develop and derive 

relationships in this volume specific notation is defined in the section where* 

lt 1s used. In many cases, variables which are defined in one section may have 

a different definition in another section. For example, the symbol P is u*;ed 

for the shortest vector from origin to the plane, it is also a vector definin; 

the specified flxed distance in the fixed distance constraint, and it is also 

used as the friction coefficient for the sliding constraint. The following is 

a lrst of nomenclature which is used extensively throughout Volume I. 

A 

Dtl 

f “J 

1 

** A 

L, J, k 

Ellipsoid matrix 

Direction cosine matrix for the nth segment 

Constraint force on the nth segment applied at 
Joint 1 

Identity matrix 

Unit vectors defining orthonormal Inertial 
reference system 

Mass matrix of the nth segment 

Total number segments 

Subscript used to define the nth arbitrary 
segment 

Constraint force (position, sliding and rolling) 

Vector from ellipsoid center to ellipsoid surface 

Locatlon of Joint j in the local system of segment 
n. 

Unit vector normal to a plane 



t Independent variable of integration 

%l Vector p sition of the c.g. of segment n in 
inertial reference 

44 Inertia matrix for the nth segment 

% Angular velocity Vector for the nth segment 
In n’s local coordinate system 

Xl 



SECTION 1 

INTRODUCTION 

In 1970 Calspan Corporation (formerly Cornell Aeronautical Laboratory, 

Inc.) began development of a mathematical model for simulating the three- 

dimensional dynamic responses of a motor vehicle crash victim. Under the Joint 

sponsorship of the Motor Vehicle Manufacturers Association (MVMA) and the 

National Highway Traffic Safety Administration (NHTSA), the original develop- 

ment and validation of the program was accomplished in two phases (Ref. 1 and 

2). Except for a special version of the Phase II crash victim simulation (CVS) 

program created for the MVMA (Ref. 3), the next major developmental effort was 

accomplished for the NHTSA and resulted in what was designated as the CVS-III 

computer program (Ref. 4). 

Recognizing the CVS-III as a potentially valuable tool for aiding 

studies of crew member dynamics during eJectIon from high-speed aircraft, the 

Air Force Aerospace Medical Research Laboratory (AFAMRL) sponsored the development 

cf a special version of the program that formed the basis of the AFAMRL 

“Articulated Total Body” model or ATB (Ref. 5). Later, the ATB model was updated 

and some new features were added under another contract with the AFAMRL (Ref. 6). 

This report documents work performed in the research project entitled 

“Validation of the Crash Victim Simulator” under Contract No. DOT-HS-6-01300 with 

the NHTSA which states the general objective as “the development of the CVS to 

a level that It can be used for a variety of rulemaking activities.” A slgnlfl- 

cant goal was “to conduct studies that specifically, quantitatively and validly 

pertain to the Part 572 dummy in several realistic crash safety compliance test 

situations.” The project consisted of two principal areas of effort (1) 

further development, improvement and refinement of the computer program, 

culminating in a version designated as the CVS-IV, and (2) the performance of 

detailed measurements and tests to define rnputs for modeling the 50th percentile 

nale dummy conforming to government specifications (Ref. 7) and executing computer 

simulations of experiments performed with the dummy to examine the valldlty of 

the model results. 
1 



The CL S-I\ version of the computer program incorporates manv 

modifications and features developed in this pro)ect as well as in conJunction 

with other closel) related research studies (e.g., Ref. 5, 6 and 8). Among 

the improvements implemented in the CLS-11’ are the following 

l 

0 

l 

l 

a new, more efficient integration technique. 

a routine to automatically position a seated occupant in 

equilibrium. 

an advanced harness belt formulation that treats interaction of 

belts connected at a common junction point, belt slippage on 

deformable segments, and allows use of rate-dependent functions 

for calculation of belt forces 

simulation of aerodknamic forces acting on body segments that ma, 

be partially shielded. 

improved routines for calculating joint torques. 

use of the main program integrator for computing vehicle and air 

bag motions. 

the ability to specify the motion of as many as six segments. 

a provision to account for segment principal axes that are not 

coincident with geometric axes, thereby allowing use of an! corvenient 

geometric axis system as the reference for segment input data 

generality in specifving axes about which segments are rotated, 

and the sequence of rotations, to achieve a desired rnltlal 

orientation. 

elimination of the need for multiple output units. 

routines for computing injur\ criteria values (HIC, HSI, and CSI) 

and for plotting any output variable(s) against anv other vari‘lble 

or time 

During the course of the present stud,, several interim verlons o‘ 

the computer program were distributed to numerous user\ throughout the world. 

Howe> er, it should be noted that the modifications of each version were incor- 

porated in such a hay that, in most instances, input data dechs remained un%ard 

compatible and useable hylth successive versions of the program. 



The final report of this project is composed of four volumes: 

Volume 1 - Engineering Manurl - Part I: Analytical Formulation 

Volume 2 - Engineering Manual - Part II: Validation Effort 

Volume 3 - User’s Manual 

Volume 4 - Programmer’s Manual 

Volume 1 describes the analytical formulations, assumptions and the 

detailed development of the mathematical equations and relations used in the 

program. * Volume 2 documents the measurement of the dummy geometric, inertial 

and joint characteristics and experiments performed to validate computer models 

of the physical systems tested. The experiments simulated include static tests 

of an ellipsoidal air bag to check the validity of the idealized bag shape and 

force algorithms, dynamic pendulum impact tests of dummy component sub-assemblies, 

and impact sled tests in which the dummy was restrained by an air bag and a 

three-point belt restraint system (Ref. 9). The third volume provides instruc- 

tion on how to use the program. Besides giving a detailed description of all 

data furnished on each input card, it explains the special input and output 

features and provides examples of program applications along with the Job Control 

Language needed to execute a simulation run. Volume 4 is intended primarily 

for use by programmers interested in the detailed structure of the program. 

Included in Volume 4 are descriptions of each subroutine, cross reference charts 

showing the subroutines called by other subroutines, labeled common blocks used 

by each subroutine and usage of each variable in the labeled common blocks in 

every subprogram, and a complete listing of the computer Fortran source deck. 

. 

* See also Reference 5 and 6 which document the analytical formulation of some 
algorithms and features not decribed in detail herein. 
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SECTION 2 

GENERAL MATH AND GEOMETRY RELATIONSHIPS 

In order to assist the reader In understanding the theoretical 

development of the equations used in the program, a description of general 

mathematical notation and basic geometrical relationships 1s presented. 

This includes discussions of the coordinates and vector/matrix notation 

adopted, basic equations for defining planes and ellipsoids and the relation- 

ship between rotations, quaternions and direction cosine matrices. F Inally, 

this section concludes with a discussion of a method for determining yaw, 

pitch and roll angles from the direction cosine matrix. 

2.1 COORDINATES AND VECTOR /MATRIX NOTATION 

In the development of the program, It was convenient to use 

a matrix notation because It bears a one to one correspondence with the 

coding. For example, consider figure 2. 1 below 

SEGMENT m 

rlgure 2.1 BASIC COORDIYATE SYSTEK 

4 
x - locatlon of c.g.as measured in the lnertlal reference 
r - locatlon of a point in segment m In m’s local reference 

7 - locatlon of the same point in lnertlal reference 



Each of the quantities $, ?, f have three components and are 

considered as column vectors (a 3 x 1 matrix) thus (the bars are deleted.) 

+) r=(:) Y=[FL) (2,1) 
In standard vector notation write the following: 

where 7, x c are unit vectors along the axes 1, 2, 3 of the inertial reference 
d & 

andi * 
m’ ‘mr % 

are unit vectors along the axes 1,2, 3 of the local reference. * 

Unless otherwise stated we assume all references systems are right handed 

orthonormal systems. That is 

LT 

where ” . ” represents the dot (scalar) product, and that 

A ‘&+ k- , d@; = i 

T@ ;= t-0 t-z k@X =o 

where’Bmdesignates the cross (vector) product. 

(2.4) 

The direction cosine matrix, D, is the 3 x 3 matrix which con- 

verts the components of a vector as measured in the inertial reference to Its 

components in the local system, thus the 3 x 1 matrix resulting from the 

multiplication operation Dx would be the components of x as given in the 

local system. 

* Alternate notation which 1s often used-is the expression of a vector in terms 
of the unit basis vectors 2, ,TT, ,T7, or e,, G 
the vector, Y= f x : 

Then a compact notation for 

p’, r fJ 
or 

5 



Note that the unit vectors are related by 

Explrcrtly writing D m terms of its 

i 

*o 

4, = d,, 

components yields 

Note also that, 

d dr, I2 

d 4, 22 

\ 
41 42 d33 

m 

D, = 

= D, 

(2.5) 

(2.6) 

Since the dot product of MO vectors 1s the product of the 
A d. 

magnitudes times the cosine of the angle between them, the dot product i - i,, 

1s the cosine of the angle between the vector i, and the vector K Thus each 

of the components of D is the cosine of the angle between the respective unit 

vectors, hence the name direction cosine matrix. Since the dlrectlon cosine 
-I 

matrix is orthogonal, the inverse of D, D , is the transpose of D, D 
T 

. 

1.e D-l = DT 

hence DDT = DTD = I, the identity matrix. (2. 8) 

To obtain the transpose of a matrix interchange the rows and columns if 

d mn are the elements of D and Q,,,,, are the elements of D transpose, 

d mB = Q *al (2.9) 



In vector notation, It LS permissible to write the expression 

(2.10) 

but In matrix notation It 1s not permissible to write 

%tr = Y 

(2.11) 

because this would Imply that 
x, + rf = Y, 

Xf + f-1 = Y, 

x, + rs = Y, 
(2.12) 

which IS true only If all three quantities have been expressed m the same 

reference system. 

The proper relation 1s 

x + D-/r =Y 

(2.13) 

or equivalently 

T X+Dr=Y 

or in the local reference systems 

DXtr = Oy 

(2.14) 

For example, substituting equation (2.2) into (2.10) yields, 

X, 7 -t X, ; + X, k + r, Trn + r&+ r3 h, 
(2.15) 

+ v,z 



Examlnlng (2.15) shows that It LS Incorrect to say xl f rI = y1 since x1 and y1 

multiply 7, and rl multlp1res-r 
m’ 

and L 1s not necessarily equal to7 
m’ 

But from 2.5 we get 

= d,, z + d,, ( + d,, h 
= d3, f + dJz; + d,,; 

(2.16) 

It can now be recognized that the quantities multiplying i, J, k are the 

quantities obtained from the matrix operation 

(2.18) 

Hence the validity of equation (2.13) 1s establlshed. 

Dot Product 

In matrrx notation the dot product of x and y 1s the sum of the 

products of the respective components when given in the same coordinate 

system, hence 

x@y = x, Y, + XiY2f X3Y3 

Note that 

x. y = xTy = y ,x = yTx (2.19) 

since XT = 6, I x, ? x, ) (2.20) 

and 

xTy=jx, x, x3) = x , Y, + x* Y, + x Y 3 3 
(2.21) 

8 



In vector notation 

x’. F is a valid expression, but In matrix notation 

X-T is invalid and must be written as 
-/ 

X * D r orXrD-‘r 

x’.& X - (iif?-) = Xfb-'f- = xTDTr = (DX]' r =(DX]- r (2.22) 
here use the matrix identity 

(AB)~ = BTAT 
(2.23) 

Note that in 2.22 parentheses have been used to avoid confusion on the order 

of operation. 

T Also note that the notation x- is equivalent to x , hence, 

it would make sense to write A* B for A 
T 

B,where A and B are matrices for 

which the product AT B is defined. 

Since X-X = Xf+Xzz+ Xi the magnitude of x 1s defined as 

(2.24) 

Cross Product 

The cross product of hvo vectors x, y 1s designated by Zsy 

and may be obtained from 2.2 and 2.4, thus 

(2.25) 



where the fact that a@b = - b@ a has been used 

Ll k \ \ \ \ \ I 
Ll 

* 
k 

\ \ 
\ 

\ \ 
/-- Jr? 

/- 

’ J 

i \ 
c ;’ 

cm 



2.2 GEOMETRIC RELATIONS 

PLANES. Planes are used extensively In the program for 

modeling various surfaces in or on the vehicle. 

Figure 2.3 PLANE COORDINATES 

Points which lie in a plane satisfy the linear relation 

QXl + bx, +cx,=d 
(2.33) 

where a, b, c, d are constants and xl, x2, x3 are components of the vector 

x which LS defined from the origin to the point m the plane. 

Let 7 be the vector which locates the point in the plane which is nearest to 

the origin; hence Fmust be perpendicular to the plane and 1 p^l IS the distance 

of the plane from the origin 

13 



It 1s convenient to define the plane by the unit vector 

Therefore 

and the drstance B= Ia (2.34) 

L 
a A 

i+ b -i; 
a*tb*+c' a’+b’+c’ 

a+ c 
]a’+ bs+cz 

(2.35) 

The equation of the plane may then be wrltten as 

F.&/J , F-r= f (2.36) 

or 

f-X = tTx=/5 in matrix notation. 

Note that a vector which IS parallel to the plane satisfies t-x=0 

Contact Planes 

Contact planes m the program are defined as follows. 

Figure 2.4 DEFINITION OF PLANE SPECIFICATION 

The user inputs the coordinates of three points 5 , $ ,s which lie In the 

plane (PT = (X1,YIJIL 1=1,3). 

14 



Ii L r-r< _ - n + - the unit vectors (this 1s done in sub- 

91 = 
(PfP$ @ (P,-P,) 

1 (P,-P,) 8 (P,-P,) 1 

9-J = 
(P,-P,) 0 q1 

I (P,-P,) 0 q1 I 

93 = 
q1 x (P,-P,) 

191 x (P,-Pl) I 

(Note - these are matrix equations) 

Since ft and pf lie In the plane, 4, is a unit vector normal (perpendicular) 

to the plane. 

It also computes 

The equation of the plane is also given by p, and/,; that 1s 

a point x lies in the plane If 

To establish contact, It 1s important to establish whether a point has pene- 

trated the plane (in back of the plane) or rf a point has not penetrated the 

plane (in front of the plane. ) 

The direction of fi is used to define the front surface. Hence 

if 
41 l x Ja;. x is said to be in front of the plane and if 

81 -x<& x is said 

to be m back of the plane. The plane IS given a finite size by accepting points 

which satisfy: 

as points which are in the boundaries of the finite plane. 

15 



Acceptable points are Illustrated as the shaded area m the 

following figure. 

The recommended procedure for defining a planar surface 

is to use points such that P, - 3 1s perpendicular to PJ - P, as In the followrng 

figure - 
p3 “m 

P, -- G --- - 

The acceptable region 1s then a rectangle with 5, 2 , G 

on the corners. 

Note that m the above figure the front side would be the srde 

seen by the reader. If P, and 4 were Interchanged, the reader would be 

viewing the back side. 

16 



. ELLIPSOIDS. Ellipsoids are used throughout the program 

for modeling the contact surfaces of the body and other curved surfaces such 

as the air bags or interior surfaces of the vehicle. 

Figure 2.5 ELLIPSOID GEOMETRY 

Consider an ellipsoid whose principal axes are aligned with the reference 

system. Points r and the ellipsoid centered atA? satisfy the relation 

where 

r= (;) ) 1.. (2) 

the semi axes lengths- 

2 
v,-4 

( ) as - I 
(2.37) 

and a, 1 a2 ? a3 are 

17 



This may be written as 

(r -1) - A (t-d) = i 

(2.38) 

where A 1s the matrix 

A = 

i: 

at 

-2 0 0 ’ -a 0 I 0 

aa 

a3 -a 0 0 1 1 (2.39) 

For convenience In the following discussion let the center be at the origin 

(f=o) l This places no restrictions on the development. 

The ellipsoid equation 1s then written 

r-Ar=f 

(2.40) 

If the reference system 1s rotated by the direction cosine matrix D such 

that 
+ = Ds 

(2.41) 

then 

r *A?-= STDTA OS = S*(OTAD)S = S-BS=i 

(2.42) 

where B- OrAD , 1s the matrix describing an ellipsoid whose principal 

axes are oriented by the rotation specified by the direction cosine matrix D 

with respect to the reference system of S. 

Note that A is a real positive definite matrix and hence B 

1s a real positive defimte matrix. (i.e. positive real elgenvalues.) 

Thus 2.40 ma\ be used to represent a general elllpsold with the restrictlor 

that A be a real positive definite matrix. 

18 



Consider a general point X 

if X-AX > 1 the point is outside of the ellipsoid 

if X-AX 41 the point is meide the ellipsoid 

if X-AX -1 the point is on the ellipsoid. 

(2.43) 

(remember that x is the vector from the center of the ellipsoid to the 

point X) 

Consider a point r on the ellipsoid 

Ar is a vector which is perpendicular to the surface at the 

point r. The outward normal is then 

t = Ar IAt\ / 

(2.44) 

A plane tangent to the surface at the point r would then be 

defined by the vector t and the distance, #?1 , of plane from the center of 

the ellipsoid is; 

Pi = r -t =r*Ar/lA+I = ‘/jAtI 

(2.45) 

In words, the distance of the tangent plane at the point r on the elllpsold to 

the center of the ellipsoid is ldAr, . 

2.3 ROTATIONS, QUATERNIONS AND DIRECTION COSINE 

MATRICES 

A direction cosine matrix is assigned to each segment to 

indicate the angular orientation of the segment. The direction cosine 

matrix is updated during integration by use of a quaternion (Eq. 2.69). 

The integrator integrates the quaternion equation (Eq. 2. 70). Rotation, 

Quaternions and Direction Cosine Matrices are discussed in this section. 
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2.3.1 Rotations in 3 -D Space 

as 

1s 

Any rotation 

rotating a vector ‘b about 

perpendicular to /s; . 

in three dimensional space may be considered 

an axis /*’ through an angle 8 in the plane that 

Figure 2.6 ROTATING A VECTOR 

Let R be the operator (matrix) which performs the rotation 

bi= Rb 

R may be expressed as 

R= pTt COS8(I-ppT)+sln0~ @ 

where /Lb/U=f 

and I is the identity matrix. 

From Figure 2.6 write 

(2.46) 

(2.47) 

-1 
b = o-c + c-d + d6’ (2.48) 
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_- 

where 

csp(,-.z))*(&zpt;-5)) = (&QZ) l (7t9-z) 

= g .; - &;i,’ (2.49) 

The inverse operation (rotation through an angle - 8 ) is 

-I 
R =ppT+ c0s e (xy--T)- SLnep 0 

(2.50) 

In terms of the components /“, ,/uz ,/u3 of the vector /; 

R may be expressed as a matrix. 

p,’ 

R= 

\’ 

(I - cos 8) + ~05 6 j4,pz (f - ~0~9) -pp~ e /f/S (l-case) +/a Sik 0 

prlu, (r- c0se) +r3 sine j4: (f- ~o~e)+~ose p2p3 (/-Co~~lp, 5Lne 

psp,(t- cOse)-pl s&tie pspz(f- Cos8)+p,s~ne pj (I-cos8)+ cds0 

(2.51) 

by using the relations 

and 



Note that 
R 

-/ = RT 

since 

and (po)T= -/ 0 

Addltlonal properties which may prove useful are derived below. The trace and 

determinant of R are given by 

+r (R) = t f- 2 cos 8 

pq= 1 

e 
and the elgenvalues of R are /, e ce -2Q * 

ande . 

Note that 

/A/ = (A+RT- 2 cos e1,/2 (I - me) (2.53) 

/U=L 
2 srne 

r3z - +23 

7-r3 - Y-31 

r2 I - 52 

where y 
Jk 

are elements of the R matrix 

R2 = R7+ tt(R b- 11 

(2.54) 

(2.55) 

combining the above, the characterlstlc equation 1s given by 

R3- tr(~)R’+ tr(~)R-I =0 (2. 56) 

J 

In this equatron, ;‘ = fi to dlstmgulsh from 1 used as index below. 



The proJectton operators associated with the etgenvalues are 

. 

(2. 57) 

Note that 

and 

r, t P, + E, = I 

G 9 = 3kE& 

where d k 
f 

is the Kronecker delta 

2.3.2 Quaternions 

In the program, quaternions are used to update the dtrection 

co9 ine matrices. A more elaborate development of quaternion theory may be 

found In Ref. 13 pg.168. The relattonshtp between the rotatton operator estab- 

lished in Equation (2.47)and quaternions 1s presented In thts sectlon. A ro- 

tatton may be expressed tn terms of a quaternion 

;’ = fy 
(2.58) 

where 
% 

= CoSeA + Jtn 8 
/ 

*jZ 

and 
f = 

cos “/, - JLh 8/2/z; 

A quaternlon may be considered as four component matrtx whtch has a scalar, 

a = co5 % as a first term, plus the three vector components, G- = SLn 8/27. 

This results ln the followtng: 

(2.59) 
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Interpreting the results as 

aba= a32S since a is a scalar 

aZu'= a(-Z.u‘ +Z@Z) 

where the product of two vectors has been defined as, 

Combining the above relationships yields 

(2.60) 

when 

then 

and 

2.3.3 

-I b = /?-a , Of b = I? b (see equation 2. 47) 

Relation To Direction Cosine Matrix 

If the direction cosine matrix D represents the relation 

between the vector 6’in a reference system and b as measured in a local 

system, then 
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b= Db’ 
(2.62) 

and 
6’ = DTb 

Previously we defined a rotation matrix R as an operator 

which, when applied to a vector measured In a particular coordinate system, 

would give the components in the same coordmate system of a new vector 

which was a rotation of the original vector. 

The directton cosine matrix represents the relationship of the 

components of the same vector as expressed tn two different coordinate sys- 

tems, one rotated relative to the other. If the local system IS descrtbed as 

have been rotated an angle 8 about an axis y from the reference, then 

(2. 63) 

2.3.4 Time Derivative Relation Between Quaternions and Direction 

Cosine Matrix 

Relationshtps are established between the time derlvattve of the 

direction cosine matrix and angular velocity which 1s then related to the time 

derivative of the quaternion, As previously established, a rotation of a vector 

b to a vector 6’ is the following: 

b’ = Or(t) b at time t. 

At a time later ttd 

Then tt 1s possible to write 

(2.64) 

bq = R(Y) b’ using the rotation operator. 
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Comblnlng these results tn 

b"= R(A)D'(t)b = DT(t+A)b 

therefore from COIltlTlUlty 

D7(t i-a) = R(A) D'(t) 

(2.65) 

or @+A) = o(t) t&h) (L .bb) 

Wrltlng the derlvatlve d(t) as b(i) = L D(++A)- D(t) 
A-0 A I 

D(t) CRT(A) - I) 
A I 

Then 

lcrm Dtt)bUrT+ cosQ(~)(I-x+r)-sii e(a),.u~ -I) 
‘tt)= A-.(, 

L A I 
(2.67) 

Us lng L’Hospltals rule 

(2.68) 

Interpret p as the Instantaneous axis of rotation and 8’ 

as the angular time derlvatlve. Thus the vector 6~ defined tn Equation (2.68) 
-1 

1s D o, where w 1s the angular velocity in the local reference system 

associated with D From the matrix ldentltv 

(4b) @ (AC) z det (A) (AT)-’ b @ C 

we have (D-la) @ (D-1C) = D-l (~0 C) or (D- 

Equation 2.68 may be rewritten as 

iD 
-1 = -Db-’ = -D (D-lo) @D-l 

= -DD-l WQ hence 

,l 
WI@ D 

-1 5 D- 1 
49 

(2 68a) 
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In quaternion notation, using q instead of R, 

D = f D, f 
(2.69) 

where the quaternion 1s defined to operate on the column vectors of the D 

matrix, DO is the initial value of D, 
. 

and p*p =I 

4 c-0) = / 

Differentiating equation (2.69) with respect to time, yields 

d= P”D++ f&f 

= j*fo + Dfjt 

= -2 (p’ji) 0 D 

since ($ and- p”/ is a vector. This results the relationshlp 

2 p*p Ld 

or 

fY = P% 

(2.70) 

More explicitly, write 4 as 

where ti 
T 

= u, 2 

(2.71) 

27 



which has the characteristic equation 

and double roots A, = 

and 

Note that T ‘= AZI. The proJections are given by 

and 

EA, = I - E,, 

If T 1s a constant, equatlon(2.7l)has a solution 

where 

(2. 72) 

(2.73) 

Therefore It 1s possible to write, 

and 

T f(a)= j(O) 

In particular, If 

(2.75) 



- 

and 

then 

(2.76) 

In quaternion notation, we have 

which represents a rotation of angle l~,Ifabout the axis". 
IWI 

2.4 DETERMINATION OF YAW, PITCH AND ROLL ANGLES OR EULER 4JKLES FROM 
DIRECTION cosmE mmx 

The angular orientation of the segments in the 3-D program are 

computed and malntained In terms of the direction cosine matrices. 

For input and output purposes, it is convenient to express the 

direction cosine matrices in terms of three rotation angles, either yaw, 

pitch and roll, or the Euler angles, spin, nutation and precession. 
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2.4. 1 Computation of Yaw, Pitch and Roll 

. A direction cosine matrix can be computed as the product of 

three successive rotations about the coordinate axes (see Figure 2. 7). This 

product can be expressed as D = T,(r) Ty (p) T,(y), or In detail 

3 2 1 

where in the above matrix product 

1 - represents a yaw around the z axLs, T=(y) 

2 - represents a pitch about the resultant y axis, T (p) 
1 

3 - represents a roll about the resultant x axis, T [r). 
X 

The complete matrix LS given below: 

D = 

cosp slny 

-slnr cosy 

-slnp 

cosp slnr 1 cosp cosr 

0 

0 

1 I 

We have tr (D) = 1 + 2 cos 8, (Section 2.31). 
2 

(cos \/ 2 cos p/2 cos r/2 + sin v/2 sin p/2 sin r/212 = cos 1312 
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- 

The dtrectlon cosme matrix defmmg the same orientation 1s: 

D= (di ) for i and j = 1 to 3 
J 

The present routine computes yaw, pitch and roll angles with the relationshLps 

(2.78) 

Application of expressions (2.78) provide excellent results except 

Ln regions approaching ~=?g(~osp-o) . Additional relationships have been 

derived which may alleviate problems m this special region. 

hence If SZR p -1 

we have y-r-tang 
/ 

421 + G, 
d 22 + d,, / 

and If 

At these points (when cos p=O, sin p=+ 1) It 1s Lmposslble to 

distinguish between yaw and roll hence some arbitrary decision must be made 

unless further information (such as memory of last point) 1s available. 

2.4.2 Euler Angles: Spin, Nutation and Precession 

In a manner similar to the above the Euler angles may be 

obtained from the direction cosine matrix. The conventional notation as used 

In Reference 11 is 
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following manner and is illustrated in Figure (2.8.) 

where y , B and 4 are termed the spin, nutatlon and precession angles, 

respectively. In particular the dIrection cosine matrix 1s expanded in the 

I 

cos y Sl,Y 0 

-sin y cos w 0 

0 0 1 

when multIplIed yield. 

D= 

- 

cos y cos 0 cos y sin4 slny SI 

-sin w case s1n# +siny cosB cos@ 

-sin y cos# -sin y sin qi cos y Sl 

-cos y case sin+ -20s y cos e cos# 

sine sin (p -sin 0 cos q5 cos e 
- 

As before the Euler angles may be computed by 

ne 

ne 

I 

e = cos-’ cd,,) , y = fan-’ (“‘vdz,), $‘= fanJ ( %_dgz) 

in almost all cases (i.e., 9fO , or 64 7l). 

For the special cases of 8=Oor 77 the following relatlon- 

ships may be used. 

e= 0 6= n 

lJl+ $$ = f&’ ( *I2 - 4, 
4, + 4, ) 



Agaln, for these special cases It is impossible to distinguish between the 

spin and precession. An arbitrary declslon could be made such as setting 

Y = 0 and computing 0 from the above table. An alternate solution 1s to 

use additional information such as memory of the last angle values to alleviate 

the problem. 
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z’ 

Figure 2.7 YAW, PITCH, ROLL 

\ LINE OF NODES 

Flgure 2.8 EULER ANGLES 
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SECTION 3 

VECTOR EXPONENTIAL INTEGRATOR 

3.1 INTRODUCTION 

In large scale simulations, such as the Calspan Three-Dimensional 

Crash Victim Simulation computer program, where the amount of computer time 

can become overly excessive to produce integration results to a desired degree 

of accuracy, it becomes very desirable to determine those integratron techniques 

that are capable of producing the best integration accuracy for a minimum 

expenditure of computer time. Throughout the development of the CVS, Calspan 

has been continually investigating different integration techniques to achieve 

these goals. 

A new integrator, called the Vector Exponential Integrator, has 

been incorporated into CVS-IV that duplicated results obtalned with the CVS-III 

integrator but required only about 10% of the computer time for a test case 

where the CVS-III integration control parameters to achieve comparable results 

on IBM and CDC computers were determined by NHTSA personnel. Other studies at 

Calspan (Sections 3.4 and 3.5) indicate that, for the same amount of computer 

time, the accuracy of integration is significantly improved with the new 

Integrator. 

3.2 MATHEMATICAL FORMULATION OF THE INTEGRATION PROCEDURE 

To describe the procedure used by this integrator, consider the first 

order differential equation 

. 
x = f(x, t) (3.1) 
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The solution of equation 3 lmay be wrltten as 

/ 

t 

x(t) = x(0) + ea@-T) [f(X(T),T)-a(X(T)-X(o))]dT 
0 

where a 1s a constant to be determined 

Assume that f may be approximated by 

:w = f(x(t) ,t) = ax(t) + a0 + alt + a2t’ 

where a, a 0’ al 
and a 2 are parameters to be determined. We then have 

t 

x(t) = x(0) + ea(t-T) 
[ax(O) + a0 + aIT + a2T2]dT 

or 

x(t) = x(0) + (ax(0)+ao)t co(t) + alt2el(t) + a2t3e2(t) 

where 

eo(tl = (e at-l)/(at) -+ 1 as at + 0 

el (t) = (eOat-l)/ (at) + l/2 as at + 0 

e,(t) = (Zel at-l)/(at) -+ l/3 as at + 0 

(The presence of the exponential function 1s the reason for the name 

exponential Integrator.) 

(3 2) 

(3 3) 

(3 3) 

(3 5) 

The behavior of the Integrator 1s determlned bv the method used for 

determlnlng the four parameters, a, ao, al and a2 In the latest version, t?e 

Integrator operates in two modes, a reset mode and a memory mode In both 

modes the parameters are selected to fit the computed derlvatlbes at t = 0, 
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the beginning of an integration interval, Hence we may rewrite equation 3,3 

as 

h = a(x(t) - X(O)) + :(O) +at+at 2 
1 2 (3.61 

In the memory mode, when a successful integration step has been 

completed over a time interval h, t + h is substituted for t, so that t = 0 

is always the start of a new time interval. This yields 

;(t+h) = a(x(t+h) - x(h)) + (a 1 + 2a2h) t + a2t2 (3.7) 

+ ah(h) - x(0)) + i(O) + alh + a2h2 

The functions are then redefined so that the form of equation 3 6 IS preserved, 

where 

new = a al 1 + 2a2h 

new = a a2 2 

new i(O) = old i(h) is used in place of a(x(h)-x(0))+;(O)+alh+a2h2 

new x(t) = old x(t+h) 

These values are used to estimate the value of x(t) at the first half 

step of the next interval, I.e., when t = h/2. In the reset mode, the parameters 

a, a 1 and a 2 are set to zero. 
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-, 2 1 Computat Ional Procedure 

The integrator uses a procedure slmllar to that used by a basic 

Runge-Kutta with the steps as follows: 

Step 1 First mldpolnt calculation at t = h/Z. 

a) x(h/Z) 1s evaluated using equation 3.5 

b) l(h/2) is evaluated by calling Subroutine PDAUX. 

cl The parameter a is unchanged. 

d) In the memory mode, the parameters al and a2 are modified so 

that the fit for the derivative 1s exact at t = 0 and 1s least 

squares fitted to the values of the derivative at the beginning 

and middle of the previous interval and to the value Just 

determined. 

el In the reset mode, al 1s set to give a linear fit to i(O) and 

;(h/2) with a = a 2 = 0. 

Step 2 Second mid-point calculation at t = h/2 

a) x(h/2) 1s evaluated using equation 3 5 

b) ;(h/2) 1s evaluated by a call to Subroutine PDAUX. 

cl The parameter a 1s updated. 

d) In the memory mode, parameters al and a2 are computed to fit 

the values of the derlvatlves at t = 0, t = previous mid-point 

and the average value of the derivatives obtained in this and 

the previous step 
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e) In the reset mode, the parameter, al, is set to give a linear 

fit to the value at t = 0 and the average value at t = h/2. 

Step 3: First end point calculation at t = h, 

a) x(h) 1s evaluated using equation 3.5. 

b) l(h) is evaluated by a call to Subroutine PDAUX. 

c) The parameter a is unchanged. 

d) In both modes, the parameters al and a2 are computed to fit 

the value at t = 0, the average at t = h/2 and the value at 

t = h lust computed. 

Step 4: Second end point calculation at t = h, 

a) x(h) is evaluated using equation 3.5. 

b) l(h) is evaluated by a call to Subroutine PDAUX. 

cl The parameter a is updated. 

d) In both modes, the parameters al and a2 are evaluated as they 

were in Step 3d. 

e) Tests for convergence (to be described later) are performed. 

If the convergence test passes, the integrator has successfully 

completed a step and we proceed to the substitution t + t + h 

as explained previously, If the integrator has successfully 

completed three consecutive steps for the same value of h, the 

value of h is doubled but is limited to the input parameter hmax 

Control is then returned to Step 1. 
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f) If the convergence test has falled and If the speclfled 

number of iterations of Steps 4 and 5 have not been made 

(as controlled by the Input parameter NDINT), control 1s 

then passed to Step 5 

g) If the convergence test has falled and the speclfled (NDINT) number 

of iterations have been made, the step size h is halved and the 

process 1s repeated by returning to Step 1 However, if h 1s 

already less than the allowed mlnlmum step size (as controlled 

by the input parameter hmln ), the integration test is conslderezi 

successful and the t + t + h substitution 1s made and control 15 

passed to Step 1. 

Step 5. Additional calculation at mid-point, t = h/2. 

a) x(h/2) 1s evaluated using equation 3 5 

b) i(h/2) 1s evaluated by a call to Subroutlne PDAUX. 

cl The parameter a 1s updated. 

d) In both modes, the parameters al and a2 are evaluated to fit 

exactly at t = 0, the last value at t = h and the new value 

at t = h/2 Just computed. 

Step 4 1s then repeated except that the value Just computed at 

t = h/2 1s used for :(h/2). Where the standard Runge-Kutta method evaluates 

functions only at t = 0 (or end of previous step), t = h/2, t = h/2 and t = h, 

the new Integrator now tests for convergence, and revaluates t = h/2 and t = h 

for NDINT lteratlons if the convergence test fails. However, the convergence 

test may pass at any t = h evaluation. Although it seems that increasing 

NDIUT may cause extra functional evaluations and hence expend additional 

computer time, If the extra functlonal evaluation can reduce the error and 

cause the convergence test to now pass, this may prove to be more efficient 
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than the additional functional evaluations made necessary by halving the step 

size. The sequence of functional evaluations iS summarized in Table 3.1. 

The integrator treats each variable separately by the preceeding 

process. There are two exceptions to this, one is the determination of the 

value of u and the other is the translation of t in the parameters associated 

with the quaternions. 

3 2.2 Determination of the Value of 01 

The variables are treated in their three component vector form 

2 and z, the same value of a is used for each of the three components of the 

vector, but a different a is evaluated for each vector. This is the reason 

for the name Vector Exponential Integrator. 

Let 

Z;(t) = a (Q-(t) - X(0)) + T(O) + at + at 2 
1 2 (3.8) 

be the vector form of equation 3.5. If two different determinations of z(t) 

and x(t) are made at the same time point t, we have 

Zl(tl = a (Tl(t) - X(0)) + S(O) + i$t + Z2t2 

Z2(t) - a (x2(t) - X(0)) + Z(O) + zlt + z2t2 

Subtraction yields 

z2 (tl - Zl(t) = a (x2(t) - xl(t)) (3 91 
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. 

If this process is done at several time points, we may make a least 

square determination of a by 

z G* (t,) n - xpJm*~tJ - ~p,l) ” 
a= 

1 I+J - Xl(tn)12 
= v 

n 

(3.10) 

The values of the numerator and denominator are carried separately as U and V 

so that they may be updated when new data points are obtained. In the memory 

mode, when t is translated by t = t + h, U and V are decreased by a memory 

factor which depends exponentially on the value of the step size h lust 

completed. In the reset mode, both U and V are initialized to zero. 

3.2.3 Integrator Convergence Tests 

The Vector Exponential Integrator obtains two sets of derivatives 

in vector form. One set, considered to be the computed value and denoted by 

z,(t), 1s obtained by a call to Subroutine PDAUX. The other, considered to 

be the estimated value and denoted by ze(t), is evaluated from the functional 

form of equation 3.8 using the latest values of the parameters (repeated for 

convenience). 

Te(t) = a(Y(t) - X(0)) + Z(O) + Zlt + Z2t2 (3.11) 

If a is large, this estimated value 1s very sensitive to perturbations 

of F(t). Consider the error measure c* defined by 

E* = 
l%(t) + aT8 - it(t) I* 

+ x1812 

l$w I * lm I * 
(3 12) 
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where 

6 = perturbation of x(t) 

h = arbitrary constant weight (present version assumes X = 1) 

Equation 3 12 1s mlnlmlzed when 

and has the value 

(3.13) 

(3 14) 

Note that when a2/A = 0, this reduces to a relative squared error of the 

derivative as was tested in the previous integrator in CVS-III. 

For each vector variable which 1s Integrated, the user supplles thrcbe 

levels of test numbers (T1, T2 and T3) that are used by the Vector Exponentia 

Integrator to test for integrator convergence. 

The procedure to test for integrator convergence 1s as follows* 

a. If the magnitude test T1 is zero, no further testing 1s 

performed and the test 1s considered passed for this vector 

variable. 

b If Tl # 0 and if lzc[’ 2 T12, no further testing 1s performed 

and the test 1s considered passed for this vector variable 
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C. If the absolute error test T2 # 0 and /zc-ze[’ 2 T2*, 

no further testing is performed for this vector variable and 

the test is considered to have passed. 

d. If c2min ’ T3’, the relative error test parameter, the 

integrator convergence test has failed; otherwise this vector 

variable has passed and the procedure is then repeated for all 

vector variables. 

It should be noted that for an integration step to be considered as 

successful, all vector variables must pass the above sequence of tests; 

whereas any single vector variable failing Step d will cause the integration 

step to fail. 

3.3 ANALYTTCA~~OLUTION OF FREb BO1)Y ANGDLAR MOTION 

The angular momentum vector in inertial reference of a single segment 

is given by the matrix relation 

h = D-l Ow 

where 

D is the direction cosine matrix 

CD is the inertia matrix (tensor), and 

(3.15) 

w is a vector representing the angular velocity 

about the principal axes in local reference. 



If the segment has no external torques acting on It, then h 1s a 

constant and the equation of motion 1s obtained by taking the time derlvatlve 

of equation3.15. 

;I = (D-l @WI) = D-l 0: + D -l w@ ow = 0 

Equation 3 16can be solved for the angular acceleration vector 

hence 

. 
w =-0 -1 

w @ @w 

It can be shown that 

. 
w l @w = 0 

w l @w = 2E 

which 1s a constant where E 1s the energy. Also, 

where * 

and 

(@WI ’ (0~) = heh is constant 

If @ 1s a diagonal matrix, equation 3 17may be written as 

. 
w1 = w 23 w /a 1 

. 

w2 = 0 31 w /a 2 
. 

w3 = 
w,w2/a 3 

al = Ol/(Q2 - Q3) 

a2 = 02/(Q3 - Ol) 

a3 
= Q3/(Q1 - a21 

(3 161 

(3 17) 

(3 13) 

(3 19) 

(3 201 

(3 21) 
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The following cases may then be considered: 

Case I: The segment has equal principal moments of inertia, i.e., 

9 = #2 = #3. 

. 
In this case, equation 3.17 becomes w = 0, hence, w is a constant. 

The instantaneous angular position is described by the quaternion, q, where 

q = co5 lwlt + fi sin lolt 
2 w 2 (3.22) 

and the direction cosine matrix by 

D= (cos II&) I + (1 - cos If+) ww’ - W’W (3.23) 

Case II: The segment has two equal principal moments of inertia, i.e., 

@l = o2 # 03. 

In this case, since i3 = 0, :l in equation 3.2lmay be differentiated 

to yield 

” . 

w1 = w w /a = 23 1 w w /a a 
13 12 

The solution is 

w2 oU30 sin Rt 

w1 
=W -- 

lo cos Rt + al R 

w30u15 sin Rt 

w2 
= w -- 

2. cos Rt + a2 R 

(3.24) 

(3.25) 

= w w3 3o 
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where 

2 l/2 

( ) *30 Q= - 
-ala2 

= Iw30(@3 - @plj (3.26) 

In terms of the Euler angles (1) , 0, 0, JI (precession, nutatlon and 

spin), if we let 

and 

@ltil/lhl = sin J, sin 0 

02ti2/lh/ = cos I/J sin 0 

03W3/)hl = cos 0 

(3.27) 

the momentum vector, h, will be aligned with the inertial z axis; the nutatlon 

angle, 0, will be constant, and the spin angle, JI, may be computed directly ‘1s 

+= -k tan 
w1 

The precession angle, I$, 1s determined by the relation 

G sin 0 = wl sin $ + w 2 cos JI = lLL 
5 

sin 0 

Therefore, 

; = IhI,@ 
1 

1s a constant, and 

4 = 0, + ( IhJ/yt 

(3.28) 

(3.29) 

(3 3(l) 

(3 51) 

(1) See Section 2 4. 
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, 

Case III: The prrncipal moments of inertia are all unequal. 

It is no restriction to assume that 01 < 92 < 93. Equation3.21may 

then be written as 

. . . 

alWIWl = a2W2W2 
= a3W3W3 = wlw2w3 

Integrating equation 3.32 yields 

2 
al(Ul -Wlo 2) = 2 

a2(W2 y. 2l = a3(W3 
2 

-30 2, 

(3.32) 

(7.33) 

wl and w3 may be expressed as functions of w2 and substitution then yields 

. 2 

a2”2 =I[-a(W 2 2 4d 2. 2l -alwl 2l b2b2’-ti2 2, -a3W3 2]/ala3j’/2 (3.34) 
0 0 0 

If we let 

2 2 2 
min = minimum (a2aZo -alwlo , a2W20 -a3W30 2, 

2 2 2 
max = maximum (a2W20 -alalo , a2W20 -a3W30 2, 

(3.35) 

(3 36) 

w2 = Y min/a2 

and m = min/max 

then equation 3.34 may be written as 

4 (l-y21 (l-w21 (3.37) 
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Now by defining 

/ 

Y d y 
u = 

0 
4 (l-y21 (l-w21 

as an Elllptlc Integral of the First Kind, and 

Y = sn(u) 

as the corresponding Jacobian Elllptlc Function (2) , one obtains 

(3 38) 

(3 39) 

sn ([t-t,] 
4--- 

- + sn-l max 

ala2a3 
(3.402 

2 2 
Further, If m1n = a2U20 - alWlo , then 

2 
Ol = 

- (y) cn2(u) 

2 
w3 = - ( 7 ) dn2(u) 

2 2 
or, 

If m1n = a2W20 - a3W30 ’ then 

2 
w1 = - (y) dn2(u) 

2 
O2 = - ( cn2 (u) 

(3 41) 

(3.32) 

(3 43) 

(2) Reference 10 
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where u 1s the argument of the sn function used for w 2 in equation 3.40. Care 

must be taken in selecting the signs of the square roots which must be chosen 

to yield the proper signs for w and J. Also note that 

sn2(u) + cn2 (u) 5 1 

dn2(u) + m sn*(u) z 1 

(3.44) 

The angular posltlon may be determrned in a manner similar to 

equation 3.27, namely 

@3w3//hj = cos EJ (3.45) 

@lwl = tan J1 

@zw2 

and equation 3.30 becomes 

COS2$ ; = lhl [ + + T ] (3.46) 

Note that in the general case, 0 and ; are not constant as they were when 

Further substltutlon into equatron 3.46 yrelds 

cy21 + (9 2-91) k sn2(u) 

; = lht @‘1(@3-@2) + a3(Q2-Q1) k sn2(u) 

Q1-l - 03-l 
= Ihl [‘3-l + 1 + nk sn2(u) 1 (3.47) 
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where 

and k = 1 if mln = a2(ti2 
2 2 

0 
- alUlo 

2 2 = m if mln = a2Wz0 - aSuS 

This 1s now in a form that can be expressed in terms of Elliptic Integrals 

of the Third Kind which are defined as 

U 

3 
71(n, u/m) = 

I 
[l - n sn"(w)] -l dw (3 481 

0 

Q3 cyll 
n = Q1 (03-G2) 

The solution of equation 3 47 may be written as 

t-t 
4 = o,+ /hi 0 + C [n(nk; ulm) - n(nk, uolm)] 

@3 
(3 49) 

where 

C = jh( (ml-' - ax-l) 
ala2a3 

T-- 
~ max 

-1 
U = sn (0 2 4 a /min ) 2 

-1 
U = sn 

0 
(w 

2O 4 
a2/min ) 



34 SIMULATION OF FREE BODY ANGULAR MOTION 

Users of CVS-III have experienced difficulty in those cases that 

involve rapid angular motion of individual body segments, Examples of this 

are (1) the basic test case Calspan has supplied on previous program tapes when 

the feet make initial contacts with the floorboard and toeboard, and (2) pedestrian 

runs by Chrysler Corporation for the RSV program when the hands make initial 

contact with the hood. In both cases, these were small body extremities making 

hard contacts near the beginning of the simulation, Attempts to control the 

resulting rapid angular motion by varying the input of the integrator control 

parameters forced the integrator to the specified minimum time step intervals, 

resulting in excessive computer CPU time, and produced questionable results. 

It became suspect that the integrating techniques used by CVS-III 

were either incorrect or incapable of properly integrating angular motion. 

It was decided to run computer simulations of a single rotating segment for 

a case where the exact analytical solution is known to study the accuracy of 

the integration of angular motion produced by the new integrator. The 

analytical solution of free body angular motion is given in Section 3.3. 

3.4.1 Computer Simulation Inputs 

The basic Inputs for the test case were given by: 

(1) One segment and zero Joints (Card B.l). 

(2) Principal moments of inertia (Card B.2), 

@X’ 
Oy and (Dz (or al, O2 and Q3) = 1, 2 and 3. 
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(3) The input yaw, pitch and roll (Card G.3), 

-1 2 y = tan 
-1 = 116.565051 deg. 

p = srr? p-T = 36.6992252 deg. 

r = 0 deg. 

These were chosen so that the momentum vector would colnclde with 

the Z axrs. Note that,CVS program normally computes the initial directron 

cosrne matrix by reversing the order of the Input rotation angles (yaw, pitch, 

and roll), 1 e., 

D=D D D 
Y P r 

whereas for output purposes, the rotation angles are defined by 

D=DrD D 
P Y 

(4) The initial angular velocltles (Card G.3)) 

0 
X’ wY 

and w z ( or w l, w2 and a31 = 36799 3780 deg/sec 

These were chosen such that the frequency of the components of angular 

velocity would be 100 cycles per second, the period of one cycle to be exactly 

10 msec Thus value 1s obtained In radrans/sec by 

0 = 200 
d--- 

3 K (ml 

where K (m) 1s the complete elllptlc Integral of the frrst kind for m = l/2. 

(5) There are no specrfled contacts and the segment 1s falling 

under the influence of g (Card A 3). 
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3.4.2 Additional Simulation Outputs 

In addition the output routi,le was modified to give the following 

outputs for every successful integration step. 

(1) The segment angular velocrty was changed from rev/set in 

vehicle reference to rad/sec rn local reference. 

(2) The components and magnitude of the momentum vector, h, 

given by 

(@w)*(Cu) = h-h 

This should remain constant, with the x and y components equal 

to zero. 

(3) The constant 2E , 
d-- 

where E is the energy, given by 

(4) In addition to the angular displacements, y, p and r, 

computed from 

D=DrD D 
P y 

the Euler angles, $, Q and 4, were printed in degrees from 

D = Tzt$> TX(O) TZ($) 
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is) The following angles, In degrees, are computed as follows 

and theoretically should equal the lndlcated rotation 

angles 

P* 
-1 

= sin 

r* = tan 
-1 Q2W2 =r 

@3O3 

3* = cos @3O3 -l Jhj = 0 

P* 
-1 99 

=tan - 
V2 

= cb 

In addlt ion, the other two rotation angles, y and v, can be compared 

to Jacoblan el llpt 1c functions, sn(u) , en(u) and dn(u) , but these comparisons 

kere not made 

34 3 Comparison Measures 

The resulting time hlstcry outputs presented manv Items nhose 

acctirack could be determined to studv the accuracy of the integrating technlciues 

used Thet lnc lude 

(11 The Y, v and I components of llnear acceleration ot- the 

segment c. g should be In the ratio of 1 2 3 at the half- 

period (every 5 msec) time points The resultant should 

remain at a constant 1 g for all points 

i2-l The z component of linear acceleration at the points (1, 2, 3) 

and (0, 0, 1) appeared to remain constant with small 

fluctuations Also, the resultant linear velocltx of the 

point (0, 0, 1) appeared to remain constant klth small 



fluctuations. These results were unexpected and have not 

been studied. 

(31 The components of segment angular acceleration (rev/set*) in 

local reference should follow known elliptic functions with a 

fixed half-period (5 msec). Their magnitudes are quite large, 

z lo6 , and the deviation from the known values at the 

half-period time points was one of the measures used to 

study the accuracy of the various simulations that were run. 

(4) The magnitude of the x and y components of the momentum 

vector h should be zero, and the deviation from zero 1s 

a meaningful comparison measure. 

(51 The values of 1 hi and E should remain constant and their 

deviation from the known constant value can be used as 

comparison measures, 

(6) The deviations of the computed values of p*, r*, 0*, and 

$* from the printed values of p, r, 0 and 4 at the same 

time points are also useful comparison measures. It was 

difficult to determine, however, if deviations were caused 

by inaccuracies in the direction cosine matrix or In the 

angular velocities. 
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3 4.4 Simulation Input Parameters 

Several simulations were run for 25 msec, 2 l/2 full cycles, 

varying the following parameters. 

(1) Integrating procedure used. 

a. New Vector Exponential Integrator, 

b. Previous integrator of CVS-III. 

C. Standard Runge-Kutta integrator. 

(2) Value of the maximum step size, hmax. 

(3) Value of the initial step size, ho. 

(4) Value of the relative error test for angular acceleration 

A summary of the various simulations 1s presented In Table 3.2. 

3.5 RESULTS AND CONCLUSIONS 

A study of Table 3.2 and the finer detail given by the slmulatlon 

outputs show the following results and conclusions 

(1) The new Vector Exponential Integrator produces very accurate 

results of free body angular motion. The resulting accuracy 

1s SO-1000 times better than that produced by the previous 

integrator of CVS-III, using the same integrator control 

parameters and approximately the same amount of computer 

CPU time (as measured by the number of calls to DAUX). In 

order to produce the same degree of accuracy r\lth the CiS-III 

integrator, It would be necessarv to tlghten the relative error 

controls which lvould Increase the amount of computer CPU time. 

58 





(2) The variation of the input parameters, hmax and ho, had 

small but lnconcluslve effects on the resultrng accuracy with 

the new integrator. In some cases a maximum step size of 

l/2 msec produced better results than those of l/4 msec 

(3) The most slgttlflcant Increase In simulation accuracy was 

achieved by decreasing the relative error test for angular 

acceleration from 10 
-3 

and 10 
-4 

. The resulting accuracy 

increased by factors of 6-30, using the largest values of hma, 

and ho tested, but required a 54% increase in computer CPU 

time. It 1s believed that a further tightening of this input 

parameter would improve the accuracy even further, as long 

as the relative error can decrease rapidly to this test 

parameter for the NDINT (Input number of maximum internal 

steps for each integration step) iterations. This appears to 

be true In our one segment simulation, but 1s not always true 

in a full scale simulation. If the relative error test 1s not 

satlsfled after NDINT internal steps, the integrator falls 

for that time step, and the current integration time step is 

halved to try agaln. There were no such integrator failures 

in all of these slmulatlons for the one segment model. 

(4) A more detalled study of the lndlvldual slmulatlons Indicated 

that there are two sources of error In the integration results. 

They are. 

(a) A transient error seems to exist at the very first 

Integration step. The new Vector Exponential Integrator 

has a built-in memory to Integrate to the mid-point of 

the next step, but this 1s zero at the start This 

transient error mav also be Influenced b\r the accuracy 

of the input numbers, the inputs to the one segment modcal 

were supplied with nine slgnlflcant figures The error 

should be mlnlmlzed by starting out with a small ho. 
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(b) A cumulative error buildup dependent on the number of 

integration steps. The individual errors are controlled 

by the relative error test. If a particular variable 

remains fairly constant, the cumulative error 1s limited 

by the number of integration steps times the relative 

error test times the magnitude of the variable. 

In the individual simulations, some of the actual errors 

followed a definite quadratic function behavior after 

5 msec, but not between 0 and 5 msec. It is believed that 

this was due to extra integration steps that are performed 

when ho < hmax, which in some cases more than offsets 

the improvement in the transient error that exists at the 

beginning by taking a small ho. 

(5) Differences between simulation results obtained previously with 

the CVS-III and the new Vector Exponential Integrator are 

probably due to loose tests on the relative error for angular 

acceleration and the new Vector Exponential Integrator probably 

yields much more accurate results, 

(61 It must be realized that the angular velocltles for the 

simulations listed in Table 3.2 are much larger than those one 

would normally expect in a full scale simulation. Also, the 

2 l/2 complete revolutions of a single segment, achieved here 

in 25 msec, 1s much larger than the rotations usually occurring 

in full scale simulations. We therefore do not think that a 

relative error test of 10 
-4 

1s necessarv under normal cnnditions. 

The following integrator control parameters are recommended as 

a result of these and other studies. 

61 



NDINT’ 6 

NSTEPS As necessary to control length of slmulatlon 

DT. An integral multiple of hmax 

hO’ 

h * max 

l/8 or l/l6 msec. 

l/2 or 1 msec but a power of 2 multiple of ho. 

h . min 
Equal to ho. 

Relative 
Error 
Test * 10 

-2 
for angular acceleration (all segments), 

10 
-3 for linear accelerations (reference segments 

only). 



4.1 

SECTION 4 

EQUATIONS OF MOTION OF A SET OF CONNECTED RIGID BODIES 

SEmENT MOTION EQbATIONS 

This section presents the equations of motion of a set of rigid bodies 

using matrix notation which has a direct relation to the actual program code. 

In this analysis each of the segments is assumed to be a rlgid body 

connected to another segment by means of a Joint. As indicated in Figure 4.1 
only one Joint is assumed present between any two segments. It 1s possible now 

to disconnect these segments into free bodies by supplying (for each segment 

in the appropriate direction) the forces and torques that exist at the Joint. 
A diagram of this step is presented in Figure 4.2. In this form the equations 

of motion may be written separately and simply for each rigid body with a cor- 

responding set of constraint equations which allow the computation of the forces 
and torques of constraint. By this method extension of the equations to any 
number of segments linked in this way is a simple matter. 

Define the location of the center of gravity (c.g.) of the nth segment 
in an inertial reference system by x,, denoting. 

where ,‘,,%,=I, are orthogonal 

coordinates in the inertial reference system. 

Define a principal axis system fixed in the segment by 

Then denote Dn as the direction cosine matrix associated with segment n . 
Such that if(!) 1 ocates a point in the local system, =+j 1 ocates the same 
point in the inertial system then& satisfies the following relationship: 
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Figure 4.1 SYSTEM OF CONNECTED RIGID BODIES 
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(4.11 

or equivalently 

Define also the k th external force actrng on the nth segment by fnk , 

The point of application as indicated in Figure 4.2 rsPnk measured in the nth 

local system. 

Let I& be the constrarnt force at JointJ acting on segment n . Thus 

of course assumes the segment h 1s connected to another segment‘ by Joint J . 

Due to the nature of the free body configuration assumed, if segment n IS con- 

nected to segment IV by Joint J then f,, acts on 
J 

acts on segment n and - fnJ =fm 
J 

segment m . 

The positlon of the c.g. of the nth segment is X,, and the velocity 

of the c.g. 1s then X,, . Denote the mass of the nth segment to be M, then 

the linear momentum 1s M* X,,, . The dynamic equatron of motion for the nth 

segment 1s then 

(4.31 

where K=I,Z . . . . . total number of external forces actrng on segment o and J =1,2, * 

the Joints connected to segment n. 

Since the mass of each segment IS constant with respect to trme, thus 

equation may be rewritten as 
Ad* 2, = c F,p1', 

J 

Thus 1s the lrnear (translational) dynamrc equation. 
(4 .'I) 
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For development of the angular equation denote on as the angular 

velocity vector of segment n and & as the inertia matrix about the c .g. of 

segment R . The angular momentum of segment II about the c. g. is written as 

% wn * Note that @!, wn 1s in local reference so care must be used when 

taking the derivative. With this in mind, the angular dynamic equation in 

inertial system components is : 

(4.5) 

Now taking the derivative yields 

Note that On 1s a constant property of the segment therefore 4 = 0. 

Also note that $=&in 0;: and $a &‘=-w~ @ 
n 

, which 1s a matrix defined 
by equation (2.68.) The angular dynamic equation may be written as 

(4.6) 

Now the torques may be catalogued as follows: 

Fnk due to external forces 

@ ffl 
due to forces of constraint 

J 
at joint 

due to constraint torques 

+ c7e, due to external torques 

Rewrrting equation (4.6) yields 

(4 * 7) 
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4 2 COhNECTIVITY 

The connectivity of the model is described by a Joint vector (array) 

JNT(J) which is interpreted as Joint J connects segment JNT(J) to segment ~+l. 

The use of this Joint array limits the model to a “tree structure”, Figure 4.:. 

That IS, noclosed paths can be found which leave a segment via a Joint and 

return to the same segment through another Joint. This also requires that a 

numbering system be used in which Joint J 1s associated with segment ~+l. 

This imposes no constraint on the tree structure. 

The program 1s so written that JNT(J) may be zero, defining a null 

J 01nt. This results in the capability of defining sets of dis;loint segments. 

Segment 1 1s always taken as a reference segment. For each Joint J where 

JNT(J)=O segment ~+l is the reference segment. For each such set of segments 

the identifying numbers must be sequential. The lowest numbered segment in each 

set is used as the reference. An example of this 1s the following: 

(1,2,3) (4) (5,6,7,8,9,10,11,12,13) 

where JNT(3) and JNT (4) are zero. Thus segments 1,2,3 would be treated as one 

set of connected rigid bodies with segment 1 as a reference. Segment 4 would 

be an isolated segment with 4 as a reference. Segments 5 through 13 would be 

treated as a connected set with segment 5 as a reference. 

The integrator integrates for the linear motion of the reference seg- 

ments only. The linear position and velocities of the other segments are de- 

termined by use of a chain algorithm (subroutine CHAIN.) 



. 

Figure 4.3 EXAMPLE TREE STRUCTURE FOR FIFTEEN SEGMENT MAN 

J4 

2 

Jl k9 LT 
1 

Js 0 ’ J8 

6 9 

J9 J6 
w 

0 0 

JlO 

0 J14 

JOINT J CONNECTS SEGMENT JNT(J) WITH SEGMENT J+l 

JNTh) = 12341671910 312 314 
I = 1234567891011121314 
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4.3 CONSTRAINT EQUATIONS 

Derivation of the additional equations required for solution 

of the system equations 1s presented in this section. The first two are 

constraints at the Joints and arise from model considerations. For instance, 

at a Joint the segments must have a point in common (linear position con- 

straint) also the type of Joints specified such as free, pinned, or locked 

require constraint equations (Joint angular position constraint). The thrrd 

equation pertarns to other more general types of constraints such as a fixed 

distance between points on segments, or sliding or rolling motion of one 

segment over another segment or over a vehicle surface. 

The general procedure for applying a constraint between 

segments m and n is to introduce a constraint force q Into the system of 

equations as : 

(4 8) 

where the matrix’P depends on the type of constraint and q is determined 

by adding a constraint equation to the system of equations. The constraint 

equations are derived in following sections. 

*Note: In all cases P may be taken as the identity matrix or it may 

be chosen to impose symmetry of the equations where this 1s possible. 

These equations, along with the constramt equations, are referred to as thtb 

system equations 
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- - --- 

4.3.1 Linear Position Constraint 

Consider the joint j connecting segment n=JNT(j) to segment 

m= Jtl. Because it LS assumed that the joint does not separate, the following 

expre s sion 

(4.9) 

holds for each joint. These equations can be used to calculate Xn 

position of segment n, if Dn, Dm and X, are known. Differentiating 

tion (4.9) results in 

the 

equa- 

(4.10) 

noting that pnJ and rm. are constant in their local reference system. Differ - 

entiating equation (4.10) results in 

which relates the accelerations. Rearranging yields. 

(4.12) 

equation 

Equation (4.12) is the linear joint position constraint 

4.3.2 Annular Joint Constraint 

Again consider joint j connecting segments n=JNT(j) and 

m=j+l. The free body method of describing the motion of connected rigid 

bodies require specification of the constraint torque at the joint. The 

particular equation defimng this torque depends on the type of joint con- 

sidered. 
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Consider the following two cases: 

CASE 1 Locked Joint 

The relative angular position remains constant thus 

the dlrectlon cosine matrices satisfy the equation 

where C 1s a constantmatrlx. 

Rearranging J-& C=D-f 
R 

Differentiating, 

eliminating C yields 

which implies 

as the velocity constraint. 

(4.13) 

Dlfferentlatlng and rearrangIng yields the aCCeleratlOn COnStralnt as : 

(4.14) 

CASE 2 Pinned Joint 

The segments are constrained to rotate about some 

pin axis which 1s fixed relative to each segment. Let hWjhR be unit vectors 

defining the prn axis rn their respective coordinate systems. Then the 

position constraint 1s 

(4.15) 



where ,& and ~$n are constant and h 1s the pin axis 

in Inertial reference. 

Differentiating yields the velocity constraint 

or 

(Note: when the matrix w Q operates on a vector, it is equivalent to the 

vector cross product ze (U s)h= QJ oh.) This velocity constraint may be 

interpreted as specifying that the components of angular velocity perpen- 

dicular to the pin must be equal. That 1s 

or 

(Note: h is a column vector, ha is h transpose [ a row vector], hha is a 

square matrix. ) 

Differentiating again yields the acceleration constraint 

which may be written as 

Taking the dot product with h yields 

o=h*[Dn-Lw, @&&J-D~l(wmd wm Ohmm)] 

= / wn-hn)‘-wn+ w~-(w~.&)~+ urn. wm 

which may be written as 
W 71’ w,--(&.&j2=. Wm. wm-~um-hm)z 

This is satisfied If the velocity constraint is satisfied. 

Taking the cross product with h yields 

-h;o c ho(..; in -0,” c& 
4 = w,& DLwn ob&w,~h, Dz wmm& 

which may be written as 

73 



(Note: that we have used the matrix identity Z-/3h =-h@ &B which 1s valid 

when h 1s a unit vector. ) In additron, we must impose the condition that the 

constrarnlng torque have no component on the pin axis, that LS 

h t=o 

This may be put in matrix form as n h-z-=0 and added to the above con- 

straint on accelerations to produce a single constraint equation for a pinned 

jornt as 

(4.16) 

where ;t LS an arbitrary scalar (Afo) 

We note that srnce (I-hh) t=t th e original system equations 

may be written as 

&I Gz +i@=hh.)t =u2 
n 

(4.17) 

This form has the advantage of making the system matrrx 

symmetrical. 

1.3.4 Additional Constraint Relationships 

In addition to the joint constraints developed In Sectron 4.3.3, 

other relatlonshlps are derived in this section for two types of distance con- 

straints, a rolling constraint and a sliding constraint. 

TYPE 1 

The zero distance constraint requires a point on a segment be 

the same as a point on another segment, as rndlcated in Figure (4.4). In gen- 

eral, consider two segments m and n such that r m locates a point in segment m 

relative to Its own c.g. and rn locates a point in segment n relative to Its own 

c.g. The zero distance constraint equation then 1s written as: 
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--- 

. 

(4.18) 

xm,Xn locates the c. g of segments m and n w. r. t an inertial reference 

system. 

equation 

Twice differentiating this equation yields the constraint 

(4.19) 

where 

TYPE II Fixed Distance Constraint 

The fixed distance constraint allows a specified point on one 

segment to be a fixed (constant) distance from a specified pomt on another 

segment, as Illustrated in Figure (4. 5). Consider two segments m and n 

such that rm locates a point in segment m and r, locates a point in segment 

h . Also definep to be a fixed distance vector between these two points. 

The constraint equation is written simply as 

p.p& Jp12 

where 

p =Xm t 0,’ rm-X,-S,‘rn 

Twice differentiating eqn (4. 20) yields 

(4.20) 

(4.21) 

where 
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SEGMENT n 

INERTIAL REF. 

Figure 4.4 ZERO DISTANCE CONSTRAINT 

SEGMENT 

v- 
INERTIAL REF 

I 
SEGMENT m 

Figure 4.5 FIXED DISTANCE CONSTRAINT 
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- 

(4.22 ) 

For the distance constraint the constraint force q must be directed along 

P* Define then a unit vector h in the direction ofp . 

(4.24) 

Although only the magnitude of the constraint force q need 

be computed, for purposes of symmetry and computation logic the vector 

nature of the constraint equation 1s maintained. 

For this reason the constraint force is defined along h by 

h.g, then maintained as a vector by h (h-9) l The same procedure 1s 

performed on the constraint relation yielding the following: 

h is an arbitrary scalar # 0. 

TYPE III & IV Rolling and Sliding Constraints 

These constraints provide the capability of modeling the 

motion of surfaces which are rolling or sliding over each other. A diagram 

of the geometrical configuration and appropriate variable definition IS pre- 

sented rn Figure 4.6. The relationship at the point of contact 1s 
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(4. 26) 

* 

(4. 27) 

The relative velocity of the surfaces at the point of contact 1s 

(4. 28) 

The rolling constrarnt requires that the relative velocity be zero and the 

slldlng constraint requires that the normal component of the relative 

velocity be zero. Thus 

VR, 0 for FOlZ 

r’* $7 0 for Sltde 

We have from (4.27) and (4.28) 

(4.29) 

Y /YL/! + igrml :&-I,, (4.30) 

Vote that for the rolling constraint, Equation (4.30) requires that D ’ ’ = &‘r; m %l 

* Cote The prime on rm and rn, indicates the time derlvatlve of the respective 

variables In Its local reference sbstem 
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INERTIAL REF. 

. 

X,, X, INERTIAL REF. POSITION OF c.0 FOR SEGMENTS m AND n. 

J,,/m OFFSET OF SURFACE m AND n FROM e.g. 

rm ,5 VECTOR TO po\~T OF CONTACT EACH IN ITS OWN LOCAL REFERENCE FRAME. 

t NORMAL TO SURFACE AT POINT OF CONTACT. 

$! CONSTRAINT FORCE 

Figure 4.6 GEOMETRY FOR GENERAL ROLLING CONSTRAINT 
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The distinction between rolling and slrding IS made by com- 

puting the force required to Impose a rolling constrarnt. The magnitude of 

the tangential component of this force 1s compared to the magnitude of the 

normal component times a specified frrctlon coefficient. 

Thus, Iye/ (tangential force) is compared to /q%4 
where PA is the static friction coefficient and 1~x1 1s the normal component 

of the constraint force. 

If lerl 5 /ml then the surface characterlstlcs will 

sustain a roll. If lerl 59 IPn1 sliding will occur. 

When sliding occurs the direction of the constraint force 1s 

along the vector h where 

(4.31) 

where 91s the normal vector, p IS the coefficient of sliding frlctlon and \/ 

as the tangential component of the relative velocity which will be equal to 

Y ALL 
for a true slide (since t yRL; 0 . ) 

The constraint equation In acceleration form are found by 

differentiating equatlon(4. 29). They are: 

for rolling; 

&&$,$i?$, f r,,+ ,,-&to,-I~,tr& (L,=DB-‘+ /y+~vi~//l-~mlll,~ 
(bv 63 (II&& f rm /‘/A -IL, @ r;- g7-‘d n7 @ r& 

and for slldlng; (4.32) 

(4.33) 
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and (I’-hh*jg = 0 , where t 1s the time derivative of t 

The two equatrons for the slidmg constraint may be combmed 

into one matrrx equation as 

(4.34) 

The right hand side of these constramt equatrons contains 
. 

the unknowns C, r-k and r-4 which depend on the kinematics and the geo- 

metric properties of the surfaces. 

The contact routines normally will compute the point of contact 

which yields r?, rq and the vectors t and h. 

In the program when a roll-slide constraint 1s specified, no force 

deflection characteristic IS specified but the impulse option should be used to 

insure that the normal component of relative velocity is reduced to zero. That 
1s one should specify the impulse option with a coefficient of restrtutlon equal 

to zero. This will insure that t * VRE. =0 at the instant of first contact. 
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Calculation of r’ r’ m’ n’ t In the Program 

The current version of the program considers ellrpsold- 

plane (Subroutine PLELP) and ellipsoid-ellipsoid (Subroutine SEGSEG) 

contacts. Since the calculations of i,rk and ;‘are similar the equations 

will be derived together. 

The equation of the elllpsolds are 

‘,.A,r, =I 
rn A, ra = I 

and the equation of the plane is 

where &, An are the ellipsoid matrices, constant in the local coordinate 

systems and t 
n 

is the normal to the plane, a constant In the local coordl- 

nate system. 

For the ellipsoid plane contact we have (Figure 4.7) 

(4.35) 

For the exterior ellipsoid-elllpsold contact we have 

(Flgure4.8) 

, 
For the interior elllpsold-ellipsoid contact (the exterior 

of elllpsold Am contacts the Interior of ellipsoid A, )we have (not illustrated) 

D-1 ~mrm = _ 

m IAm%l 

f -3;’ 4 r72 

IAn 57 / 

For convenience we define (for ellipsoids) 
Ar 

,t=f on 
v-/r 

I T 4 

82 



UNIT VECTOR NORMAL 
TO PLANE 

SEGMENT n 

Figure 4.7 ELLlf’SOlO ROLLING (OR SLIDING) OVER A PLANE 

SEGMENT n 

Figure 4.8 ELLlPSOlD ROLLING (OR SLIDING) OVER AN ELLIPSOID 

I 
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yields 

Differentrating the equations of the elllpsolde and planes 

rm i,=o 

qt* =o aho -5.4 =a 

Dlfferentlating the elllpsold plane normal equation 

D&y Urn@ 
A r r 49 riiJ --.3-z tJl-1, - - A r 4nr* * A,r; 

lW,I p5757I 7n m p 4’ I 

=-t= -J,,L, 6D tn 

which may be wrrtten as 

-0,’ :.,~~*+~~~-*~t~~l~~~,=-‘;-~‘~~~~ 

Dlfferentratlng the exterior ellipsoid-ellrpsoid equatron 

-3; .&d-*.0,’ 
! 
~-&,&-r?- 

1 

A 4% 
-L?i?%L -&-Dnl”n@ t,-7,“ii-r,l+j-j- ,A, *q, R 77 

Dlfferentlatlng the Interior ellipsoid-ellipsoid equations 

If we add the relation 

V,, +Dz r; =Jnezr7; 

to the above equation we have a sufficient number of equations to solve 

for i, r$, , r,’ . These may be summarized as follows: 

(4.36) 
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I I -  

and 

for plane 

for ellipsoid n, f external contact 

- internal contact 

A 1s an arbitrary constant chosen such that the matrix 1s nonsingular 

(in practice 2 ~1 1. 
b-4 

The solution may be written in the form 
0;’ ret = C-‘w - C-‘+ 4. c-‘w 

t C+f 

DG'rmr = D)," rh' - k‘ 

i - 0,’ [&,a f, + F r,,‘] (4.37) 

where 

for the elllpsold-elllpsold contact 

and for the elllpsold-plane contact 

C = D;’ A, D, 
/ IAmrm( 

(4.38) 

(4.39) 
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4.4 

4.4.1 

TENSION ELEMENT 

Speclflcattons 

The primary purpose of the tenslon element (TE) ts the stmu- 

latlon of the longLtudlna1 muscles of the human bodv. It behaves statically or 

a manner slmular to a linear spring tn that when lt LS subJected to a tensLon 

force j?, It Increases Ln length by an amount proportional to F. However, 

In contrast to a spring, the TE displays no sttffness when subJected to a 

compress Len force. In this respect It IS slmllar to a longltudlnal body muscle. 

The TE has been designed so that, under the action of raptdly 

va rymg tens ton forces, the dlstrtbutlon of strams wlthln the element 1s 

untquely defined by the strains at the two ends of the element. As a conse- 

quence, the equations of motion of the element are slmpllfled: they depend 

only on the posltlons, velocltles, and accelerations of the two ends of the 

element. 

The computer program tnputs requtred for complete speclfl- 

catlon of the TE are denoted by Lo, MA, MB, MAB k, d . These quantltles 
9 

are defined tn the followmg dlscusslon 

Ftgure 4.9 deptcts the geometry of the TE when subJected to 

a static tensIon F 

Figure 4 9 TENSION ELEMENT GEOMETRY 
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The two ends of the element are denoted by A and B. In connection with 

Figure 4.9 quantities are defined as follows: 

L = length of TE when subjected to a tension force 

AC = dtstance from the end A to the center of mass of the TE 

LO 
z length of TE when the tenston force F 1s InfinttesLmal. 

i= the value of 4 when the tension force p 1s tnfinltestmal. 

The cross aectkon of the TE 1s treated as negllglble. Thus, 

the moment of Inertia about tts long axis IS negligible. The inertial prop- 

erties of the element are completely determined by the quantities L and! 

defined above, and the quantities MT and $ A defined as follows: 

MT=total mass of TE 

@A’ @B 
=moment of inertia of TE about the point A,B and about an 

axis perpendicular to the long axis of the element when 

the tension force F 1s negligible. 

In terms of the quantities L, L o, MT and QA, the quantities 

MA and MB and MAB are given by 

% = jA/& (4.40) 

4’ ?Ll..~ (4.41) 

M,a= f (M+-, 4,) 
(4.42) 

The computer program input, k, IS a force constant given 

bY 

(4.43) 
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Where F denotes the magnitude of the static tension force? , The quantLtLes 

?‘, L and Lo are defined above. 

To define the program Lnput, d, tt LS noted that when the 

TE 1s not tn stattc equlllbrlum, the tension force, F’, can be expressed as 

the sum of the force of tnertla, the force of stiffness, and the force of 

vLscoslty (or dlssLpatLon.) The parameter d 1s a constant of dLsslpatLon 

defined by the relation 

2 

F 
dlsslpatlon = dL, 

Where g dlssLpatLon 
denotes the force of dlsskpatlon and i denotes the time 

rate of change of the length, L, of the TE. 

4.4.2 Derlvatlon 

Represent the TE by the discrete system deplcted In Figure 4.10 

Figure 4.10 TENSION ELEMENT MODEL 
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As shown, the discrete system IS composed of N partLcles connected by 

N-l springs. The mass of theNth particle 1s denoted by m . The posltlon 
n 

vector of theNth particle relative to the inertial coordmate system 1s 

denoted by T, , z and FB denote external forces applied to the first and 

Nth particles respectively. Smce the element cannot support externally 

applied torques, tt must be coupled to other elements tn such a way that It 

~111 not be subJected to external torques (or force couples.) 

The springs can exert forces of tension when stretched but 

they cannot exert forces of compression. Each spring has VISCOUS damptng. 

The TE 1s subject to constraints (not shown In Ftgure 4.10) 

which insures that all of the particles lie on a straight lme (regardless of 

the directtons of the applied forces $ 
2 

and f6 ) and that the strains and 

relative motions within the element are uniquely determined by the positions 

and motions of the two ends of the element. The constramt relations are: 

I<-< )=& f$‘r ) 

Where the k, are constants which satisfy 

(4.44) 

Equation 4.44 may be re-expressed 

(4.46) 
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The equation of motLon of the TE ~111 be obtalned by the 

D’Alembert method. That IS, the equations ~111 be expressed first for 

motton Ln the absence of the constraints, then the modlfled equatLons, whtch 

take account of the constraints, can be Inferred. 

The equations of motion In the absence of the constraints tn 

(4.46) are 

Where T, V, D denote, respectively, the total klnetlc energy, total poten- 

teal energy, and Raylelgh DlssLpatlon Function for the system deptcted In 

Figure 4.16. T, V, and D are expressed as functions of the coordLnates 
. -2% 

rn and veloclttes ?* of the particles. In (4.4 7) c?/jrr_ denotes the gradtent 

with respect to the components of “a. 

TO obtain the equations of motion which include the constrallts, 

T, V, and D are re-expressed as functions of $,TB,yB F, by direct 

substltutlon, employing the cons tra Lnt relations In (4.46) The equations of 

motion can then be expressing 

where 

(4.48) 

*Since we are working In 3 space It seems simpler to write equations (4.47), 
(4.48) and (4.49) in a vector form wheresach equation represents 3 equation, 
In the more convent$onal notation where rn would have 3 generalized coordinates 

$I*, 8 j%. ) %a, and r the coordinates : j& , jjm3 - In this scheme (4.47) would 
be written as 



. 

given by 

(4.49) 

From Ftgure 4.14 the total kmetlc energy of the system 1s 

Substituting from (4.46) and rearrangmg leads to 

7-r &if-- I$ Y g q&j ,<I % MA&-Q 

(4.50) 

where 

The potential energy, V, contributed by the stiffness of the 

springs may be expressed 

Where Ala denotes the relative elongation of the spring connecting the nth and 

(ntl)th particles, and 4, denotes the corresponding force constant. The 

second of the relations (4.52) expresses the condition that the springs 

exert no forces of compressLon. Evidently, 

(4.53) 

Where ir$, -%I, denotes the length of the spring connectmg the particles 

n and ntl when this spring ts subJected only to a negllgtble tenslon. From 
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(4.46) 

(4.54) 

and so 

(4.55) 

Where Lo denotes the overall length of the TE when It 18 subJected to a 

negllglble static tension. 

Substltutlon of (4.55) into (4.52) leads to 

v= fk~~-iq-‘o]’ If r 1 s-rA17L, 

v= 0 
otherwise 

Where 

(4.56) 

(4.57) 

The RayleIgh Dlsstpatlon Function, D, IS equal to half the 

rate of dlsslpatlon of energy resulttng from the VISCOUS forces. It 1.3 

assumed that a dlsslpatlon element ts connected between each patr of 

particles. 

Thus, 

(4.58) 

Where d, denotes the dlsslpatton coefflclent for the dtsstpatlve element 

between the nth and (ntl) the particles and A 1, IS deftned In (4.55). 

SubstttutLng (4.55) tnto (4.581 one obtains 

(4.59) 
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where 

(4.60) 

Substitution of the relations(4.5Q), (4.52L (4.59) and (4.46)lnto 

(4.48)and (4.49) yields the equations of motion for the TE: 

(4.61) 

otherwlse (4.62) 

The definitions of the parameters MA, MB, MAB, K, d 

given In the first subsection follows from the equations of motion tn (4.61) 

and the relations In (4.511 and (4.461 

For purposes of lmplementmg the tenslon element In the 

framework of the program, let the pomt r~ be fixed ur one rigid segment 

and let the point re be fixed ln another rlgid segment. Then the following 

relationships may be written. 

rA =&, f &+, 

r0 =Xn t Di’rm 

where xm ‘Km -location of the c. g. of segments q and q respectively in 

inertial reference. 

rh * location of pomt rA with respect to the c. g. of segment IPI 

this IS a constant In m’s local reference. 
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r,, locatkon of pomt rg wLth respect to the c. g. of segment 

this 1s a constant Ln ‘t& local reference 

x,D7) are the dlrectlon cosme matrices of segment m and seg- 

ment R 

The inputs required for each tensIon element are 

%J,*7?T& and the values of the scalars &“, MB, MAB,kj d and L, 

With each tension element are associated the two constraint 

forces FA and FB. Equations 4.61 dre the constraint equations. The 

force (- FA)and the torque ( %-I@%9 F&b re applied to segment M and the force 

cFB)and the torque(r,+9D0 FB)are applLed to segment h (This IS done by use 
. . 

of the system matrtces Al3 and Az3). The expressions for gA,yB,i$,rfi 

are given: 

where wi, and WV are the angular velocltLes of the respective segments. 

SubstltutLon of these terms Into the constrarnt equation 4.61 results In the 

form needed by the program. The sLmularlty of this constramt to the other 

types of constraints (ftxed point, etc.) should be noted. The tens ion eleml?nt 

1s another example of a case where the system equations are non-symmetrIca 

as was true for the sltdlng constraint. 
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4.5 FLEXIBLE ELEMENT PARAMETERS 

The flexible element is intended for representations of complex, 

flexible portions of the human body, including, in particular, the neck, torso, 

and trunk. It is composed of a chain of N Joined rigid segments. Each Joint 

has three degrees of freedom with three corresponding stiffness constants. In 

addition, each of the N-2 interior segments of the flexible element is con- 

strained so that its orientation 1s uniquely determined by the orientations of 

the end (or outer) segments of the element. These constraints have been intro- 

duced to approximate the effects of body muscles which are so connected that, 

rather than acting on individual Joints, they determine the overall flexural 

characteristics of the represented body member. Fidelity of representation can 

be insured by determination of flexible element parameters from measurements. 

Table 4.1 is a summary list of proposed computer program inputs for 

the flexible elements. The last column of the table indicates where the defi- 

nition of each input is given. 

The orientation of segment n relative to segment 1 1s designated by 

the three angles B,~, Brn, $, (see the discussion in the context of Figure 

4.12) In order to avoid singularities in certain transform matrices employed 

in the calculations (see equatron (4.10)> it is necessary to restrict 0, to 

the domain 
- TA c e+ < % 

Since there are no restrictions on the ranges of variations of B,n and 63,’ 8, 
n 

should be chosen for the angle of bend maximum range of variation. For 

example, in the representation of the human torso, forward bending should corres- 

pond to the angles 8,n and not to Bin. sn would correspond to sidewise bending 

of the torso. It should then be possible to satisfy the above bounds on &,, 

since few people (if any) can bend their torsos sidewise through 90’. 



Table 4.1 

COMPUTER PROGRAM INPUTS 

FOR FLEXIBLE ELEMENT 

BRIEF DESCRIPTION 

set of bias angles 

number of segments in 
element 

first-order taper function 
in constraint relation 

second-order, interaction 
taper functron in con- 
straint relation 

second-order, quadratic- 
form taper function in 
constraint relation 

moments of inertia elements 
of nth segment 

mass of nth segment 

yaw, pitch and roll 
angles 
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WHERE DEFINED 

Equation (4.64) 

First paragraph 

Equatlon(4.64) 

Equation (4.64) 

Equation (4.64) 

Context of Equation 
(4.69) 

(k;;ext of Equatmn 

Context of Equation 
(4.63) 



EXTERNAL 
SEGMENT JOINTS 

SEGMENT 

FIGURE 4.11 MODEL OF FLEXIBLE SEGMENT 
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In the rest of this subsection, all of the basic geometry of the 

flexible element, except details on the Joints, is presented. The latter are 

dlscussed In the third subsection. Development of the equations of motion 1s 

undertaken In the second subsection. 

As noted above, the flexible element 1s composed of N Jolned seg- 

ments which are labelled 1 to N. In each segment there 1s a rigid local coordl- 

nate system with orthogonal unit vectors 
Av A?? “V 
e,J 2) e “3 * As depicted in Figure 

AA 
4.12, the unit vectors e, are allgned with the principal inertia axes. Z n 
IS the position vector of the c.g. of segment n. 

“? 
The orlentatlon of the e, vector of the nth segment relative to 

segment 1 1s shown In Figure 4.12 and are in agreement with yaw, pitch and roll 

angles described in Figure 2.7. 

Figure 4.12 COORDINATES FOR FLEXIBLE SEGMENT 
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The first rotation is through an angle 

(which is the new e, .) The relation 

In accord with a suggestion of Dr. Ovenshire, ,9/, , B+ ,8,, will be 
represented by the second degree polynomials in the relations 

where 

e* r?? = a bias function with eL =U cn / or n =N 

P %‘>O =o f rc,,,o=o (4.65) 

The bias functions 0‘; and the taper functions f Lj (n), pLJ (n) I AdI (m) are 
all program inputs. 
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The Joints are located in the standard manner 

K7 = Fn +Tnn 

where R, 1s the location of the nth Joint, also 

(4.66) 

77 =I, N-t (4.67) 
- 

where r 
‘f 

are defined in Figure 4.11. 

The connectlon constraints (that IS, the condltlon that the Joints 

connecting segments do not pull apart) are contained In the relations (4.66) 

and (4.67). . 

The lntroductlon of the bias functions, 8:,., also allows the latitude 

of choosing the prlnclpal axes for the nth segment to colnclde with the unit 
An 

vectors e, . Thus, the Moment of Inertia Tensor for the nth segment 1s given 

by 
3 

(4.68) 

The lnertla elements fL" are program Inputs, as are the masses M, of the 

segments. 

The Eauatlons of Motion 

The translation equation of motion of the nth segment of the flexible 

element may be expressed 

(4.69) 
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where ti,,, and ?n are as previously defined, and 

7, = an external applied force at the point with position vector zO 

(see Figure 4.11) 

b 

FN = an external applied force at the point with posltlon vector 

F; t an external force applied to a point of the contact surface 

which is rigidly connected to the segment n 

r; = the summation of all constraint forces acting on segment n as 

a result of the configuration constraints on the flexible element 

The rotational equation of motion of the nth segment may be expressed 

(4.70) 

where A and F,,‘are as previously defined and 

q = total angular velocity of nth segment 

i?, = an external torque (that is, force moment and/or force couple) 

applied to segment 1 through application at the point with 

positlon vector Z,. 

iTv = same as Nl except applied to segment N through appllcatron at 

the point with position vector (R,,, + J, 2:). 

-I( 
PC = posrtron vector of point of application of the force 7; relative 

to the c.m. of segment n. This vector depends on many things 

lncludlng the dlmensrons of the contact surface. 
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CfUTZ net torque applied to segment n as a result of stiffness of the 

Joints which connect this segment to the adlacent segments n-l 

and n+l. 

ghc = the summation of all constraint torques acting on segment n as 

a result of the conflguratlon constraints on the flexible elemtant . 

In the successive sections, the necessary expressions for forces, 

torques and constraint relations are derived. 

Let cn 
, n+l denote the torque exerted on segment n due to the stiffness 

of the Joint between segment n and segment n+l. The deflnltlons of cn. n+l and 
#OINTS 

n result in the following equations: 

where 

%JOINTS 
n = 7j, n+l -‘n-l n n=l,N 

, , (4.71) 

A 

N 
2,*+1 

=* 
O,l 

=o (4.72) 

scribed 
The ‘n n+l are computed using the same coordinate designation as ce- 

In SectI& 6.0 and indicated In Figure 4.13. 

ExpressIons For Torques Due To Stiffness Of Joints 

Figure 4.13 JOINT COORDINATE SYSTEM 
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- 

where 

(q,a;,P3) = orthonormal coordinates defining the segment axes for 

the nth segment 
(4.73) 

orthonormal coordinates defining the Joint axes 

for the nth segment (4.74) 

The program provides several methods of determining the torques be- 

tween the segments defining the flexible element as indicated below. 

'n n+l , 
torque equations developed in Section 6.1 (4.75) 

'n n+l , 
torque equations developed in Section 6.1 

using globolgraphic representation of Joint 
stops (Section 6.2) (4.76) 

'n n+l , 
torque equations developed In Sectlon 6.3 
(Euler Joint) (4.77) 

'n n+l , 
torque equations developed in Section 6.3 
using the GlobalgrpahicTepresentation of the 
point stop torque . (4.78) 
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The Force-Type Constraint Relations 

From Figure 4.17 and the dlscusslon In the context of (4.66) and 

(4.67) the connection constraint for the Joint between segment n and segment 

n+l is 

These relations do not include the connection constraints between 

the Flexible Element and other segments It IS connected to. Dlfferentlatlng 

(4.79) twice yields 

Let 

(4.80) 

A 

fh = constraint force exerted on segment n due to connection 

constraint between segment n and segment n+l. 

Then 
= ?* - ;-, TV= 7,N 

(4.81) 

> A - Corpve gTc = &?B fn - r;-,,, a Fn-, + n3 
(4.82) 

AC 
where Tnc and n,, are the total constraint forces and torques on segment n 

(previously deflned)and 

(4.83) 

104 



. 

Forces and torques resulting from connecting the Flexible Element 

to external segments are represented separately by 6, iN , g, and NN . ,., 5-i tor+ue 

denotes the net constraint torque acting on segment n as the result of torque- 

type constraints. 

The Torque-Type Constraint Relations 

This subsection covers the formulation of the torque-type constrarnt 

relations. The correspondrng compatibility relations are considered in the next 

subsection. 

The relations in (4.64) can be expressed more generally 

(4.84) 

The functions G,,can be evaluated In a separate subroutine. Thus procedure ~111 

allow more latitude for generalizations in the functlonal form. 

From (4.84) 

where 

(4.85) 

h= Z,N 

(4.86) 

Now, the O,,., are nonorthogonal components of the relative angular - 
velocity rS,- q . From (4.65) and Figure 4.12 

(4.87) 
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Put 

(4.88) 

Then, (4.87) may be reexpressed 

-n 
Introduce reciprocal unitary vectors gL such that 

From (4.85), (4.89) and (4.90) 

or, employing (4.89) 

(4.89) 

(4.90) 

where Grit denotes the tensor 

(4.92) 

RearrangIng (4.91) , one obtains” 

- 2, - G; * “;, =0 

77~ 2,N-7 
(4.93) 

*Note that GN* =I (where I denotes the Identity tensor.) so (4.93) 

vanishes ldentlcally when n = N. 
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Differentlatlng (4.93) : I 

c 1 
. 2 + Gt n n -= 

= - G,’ . 5, + G,’ . wN 

(4.94) 

In employing (4.94) , it is to be observed that 

A logical base system in which to express the elements of the tensor 

4 is the 6“ system. In this system 

(4.96) 

“N 
To evaluate 

#+I 
G fn , a,” 

CY 
and 4 can be expressed In terms of the unit 

j 
vectors eL . 

From Figure 4.12 

(4.97) 

Substituting (4.97) into (4.88) yields 

277 
ac 

=? 
p7 

(4.98) 
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where 

i 

u 0 I 

(c‘; ) = - xn e,, f co.5 e,, 0 \ 

co5 L& cL?sa 
71 

cdsyn 5Lne 
frl 

-Sm8,,, 
1 

/ 
(4.99) 

3- 

2‘ 7, = c (c “)-’ 

t=7 “1 
“k 

(4.100) 

where ( C “) - 7 denotes the transpose Inverse of c‘“, given by 

The singular points of the matrix in (4.101) can be avoided by llmltlng the 

range of variation of e , as dlscussed in the first subsection. 

Substltutlon of (4.98) and (4.100) Into (4.92) leads to 
\ 

Comparing this relation with (4.96’, it 1s concluded that 

(4.101) 

The next step 1s to differentiate Gt n * 

From (4.96) 

GT 7) 
= z, 8 &+ - “A a z, + f f ;ln 2; ;; 

,rr JR’ Lf 

p= Z,h-* 
(4.103) 
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From (4.102) 

Now 

or 

where 

Also 

where 

Further, 

or 

(4.104) 

(4.105) 

(4.106) 

-i rn=I,Z 

2 @7n 
(4.108) 

where 

(4.110) 

6 nk4?rn can be evaluated m the subroutine which evaluates Gn,,k and G, n . 
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In summary,$ycan be evaluated piecewise. First, the quantltles 5, 

and q are integrated to obtain s and 2, . Then 0,, can be determlned 

from the inverse of (4.89) : 

(4.111) 

The quantities e,, L = 1, ,3 can be evaluated either by lntegratlng BcN or 

by employing the dlrectlon cosines of segments 1 and N, which are obtalned by 

integration. The quantltles 8, n and iLn (L = I,3 , n=t . N-l) can then 

be obtalned from the relations (4.84) and (4.85). This procedure insures the 

satisfaction of the conflguratlon constraints. G hKLm and d,*,, can be eval- 
- 

uated fLom(4.109) and (4.E) nd 0: m,, can 

(4.108). Then T: . TK ,(c,“,,-’ and’ 

be evaluated from (4.107) and 

(cYj> can be evaluated from (4.99), 

(4.105), (4.101) and (4.107).-FInally, Go;” ’ can be computed from (4.105). 

The dlscusslon of the quantltles which appear In the torque-type con- 

stralnt relations is complete. In the last subsection, the representation of the 

constraint torques 1s considered. 

The Constraint Torques 

From (4.70) and (4.82)) the rotational equations of motion may be 

expressed 
torpue a, = N, opplt ed 

n=7,N (4.112) 

where 



-~o?-cc _ 
;)71 = f ?~ @ f, - f=- n-r,n * 7-7 (4.115) 

- to7 
and a,, P YC 

denotes the constraint torques resulting from the constrarnt 

relations 

n= 2,N-f 
(4.116) 

The easiest way to infer the compatibilrty relations among the con- 

straint torques is by the Lagrange-multiplier method. If the constraint re- 

lations in (4.116) are represented in the form 

N 

c 41” . zT> = 0 
m=t, N-7 

h-f (4.117) 

- toT-pr 
N-l 

an = 

c 
i, * A; (4.118) 

rn.2 

where the A, are vector Lagrange multipliers. 

Comparing (4.117) wrth (4.116) it is readrly concluded that 

-io~pc = 71 (4.120) 

Elimination of 7, from the relations (4.119)-(4.121) is immedrate, and 

leads to the compatibrlrty relatrons among the torques. 
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It 1s apparent that the equations of motion in (4.112) in conJunctIon 

with the constraint relations in (4.116) can be solved uniquely for the $m 

andthe A,. 
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4.6 SINGULAR SEGMENTS (MASSLESS ELEMENTS) 

In some slmulatlons, It may be desirable to ignore the mass and/or 

particular components of the inertia tensor. This IS feasible If sufflclent 

constraints exist to define the motion (I. e. the system matrix IS non-singular.) 

Because of the generality of the program, tt 1s difficult to establish a necess- 

ary or sufficient condit\on for the assurance of a non-singular system matrix. 

But, for example, a segment connected between two other segments Ln a chain 

with at least one pinned joint may be asslgned a singular mass or Inertia 

matrix. 

The program ~111 accept these singular segments without special tn- 

put. If the mass or any principal component of the inertia tensor 1s zero, the 

program will treat that segment as singular. It 1s assumed that the user will 

supply sufflclent constraints to avotd a singular system matrix. 

The effect of this singular feature IS unknown, but \t 1s conjectured 

that tf a mass or inertia component of a particular segment 1s very small, the 

use of a zero value may ellmlnate undesirable modes of osclllatlon Ln the 

system. As a matter of interest, the program ~~11 accept negative values of 

mass and/or prlnclpal components of lnertLa*. 

“In the sprmg of 1973 Dr. OvenshLre asked Calspan to make a series of runs 

using modified masses and lnertla tensors. Dr. Kane at Stanford Unlverstty 

had shown that Ln a connected set of rlgtd bodies that the def\nltlons of mass and 

lnertla were not unique. Calspan does not know what Dr. Kane’s method is for 

determlning equivalent systems but the following theorem was proved by Dr. 

Fleck at Calspan and used to compute accurate equivalent sets. Dr. Fleck 

assumes that this must be Kane’s result. 



Theorem on Equivalent Systems. 

The following is a proof for equivalent systems applied to a system 

of n rigid bodies connected by Joints. Consider n rigid segments linked 

together In a tree structure. That 1s there 1s only one path through the 

qtructure which leads from any segment to any other segment. 

Define: zk 

‘L, 

?: 
k 

be the location of the center of mass of the kth 

segment 

be the mass of the kth segment 

be the tnertla matrix of the kth segment 

be angular velocity of the kth segment 

be the location of Joint J relative to the center 

of mass of k th segment. This IS defined only for 

Joints ltnklng segment k to ad]ouItng segments. 

be the constramt force acting on segment k at Joint J 

which prevents the Joint from separating 

be the lth external force acting on segment k 

locatlon relattve to c. m. of point of applLcatIon 

of the lth force on kth segment 

be external torques (couples) acting on segment k. 

The equattons of motton of thts system are: 

???Tt + c $ = c GA K=f,N (linear) 
lLK f J e 

(4.122) 

(4.123) 

11’ 



- 

SubJect to the constraints 

7, + 5, = yL + F$, t = 1, M;#l,e (4.124) 

Note that the sum over j In the linear and angular equattons ts 

taken over only those Jotnts which are directly connected to segment k. 

Consider the transformation of variable: 

(4.125) 

where 8 
kJ 

ts the sum of the 8A of the segments whtch may be reached 

through Jomt J from segment k. The Ck are determtned by the relation 

Theorem: This transformation leaves the equattons InvarIant; 

that IS the new equattons of motion can be written as: 

(4.126) 

(4.127) 
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The proof 1s stralghtforward by substitution: 

because 

and 

For the angular equation, consider the followmg substitution: 

< s(m; ;; +I%;) + t dkJ i-7;,@ (x,“t zJ”, 
J J 
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and noting that 

yields 

2 Fq a 7; 
J 

, -p--J@ q? = 

which completes the proof. 

. 
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4.7 DESCRIPTION OF THE MATRICES IN THE SYSTEM EQUATIONS 

Now that the constraint relatlonshlps have been derived, it 1s appro- 

priate to discuss the overall set of system equations Indicated below in matrix 

form. 

4 G + AZ! f f A,, t t AZ9 fl + A,, T = U, 

with constraint equations of the form: 

lnear acceleration 
(inertial ref .) 

angular acceleration 
(local ref .) 

Joint linear position 
constraint 

joint angular position 
constraint 

other constraints” 

(4.128) 

(4.129) 

- -. 
(4.1 IO) 

(4.121) 

(4.1 i2) 

flexible element constraints 
(4.133) 

When dlscusslng the matrlces of vectors of the model, it 1s convenient to talk 

in terms of the 3 x 3 submatrlces, or 3 x 1 vectors that are involved. For ex- 

ample, the inertia matrix @ for a model with N segments may be described as con- 

slsting of N, 3 x 3 submatrlces 49 - The matrix gL 1s a diagonal matrix (since 

we are using prlnclpal axes as a coordinate system) with the 

* Note, for the slldlng constraint, or when tension elements are used,i$ and & 
are not the transposes of Al3 and&. Thus when a slldlng constraint or tension 
element 1s active the system equations are not symmetrical. 
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diagonal elements equal to the components of inertia about the x, y, and z 

local axes of segment 1. The matrix p is the diagonal matrix which is the 

collection of the n matrices p'L . Similarly the mass matrix MIS diagonal 

and is the collection of the submatrices mL ; which is a diagonal 3 x 3 

matrix with the mass of segment 1 on the diagonal. Thus, unless it is speci- 

fically stated to the contrary, when we refer to the element in the t Zh row 

and Jfh column of a system matrix we are referring to the LJ thsubmatrix. A 

diagram of the M and Q matrices rllustrating the above convention is pre- 

sented in Figure 4.14. 

Linear Joint Constraint 

Consider the linear joint constraint equation derived In the previous 

section and repeated below for comparison. 

Compared with the system equation 

There will be an equation for each Joint J for J =I, J. The 
matrlxB,1 will then be an NXJ group of 3x3 matrices. For joint j there will 

be the identity matrix in row J column m and -1 in row J column n ofB,, . A 

schematic diagram ofBii is presented in Figure 4.15. Matrix & is also 

Jx N with the entry for joint J indicated in Figure 4.1 . V' then is the 

right hand side of the equation and also appears in Figure, 4.16. 
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COL. COL. 

ROWj J ROWS 

1 

Figure 4.15. B,, MATRIX ENTRY FOR JOINT j 
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“1 

m= JNT(,) 

k= Jtl 

ROWJ 7- 
-1 

Fqure 4.16. 612 MATRIX ENTRY AND VI VECTOR ENTRY FOR JOINT J 
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Angular Joint Constraint 

The angular joint constraint equations have three different forms 

depending on the type of joint specified. These equations are the following: 

f-0 free (ball & socket) joint 

L?i' W* -IO,%, -0 locked joint 

pinned joint 

The matrrx equation for the above equations is 

Again for M segments and J joints a,, wrll be TX N collection of 3x3 sub- 
matrices. The particular entries depend on the type of joint specified. A 
typlcal entry for joint J is given for B,,,B,+ and VA in Figure (4.17). 

Other Constraint Equations 

The distance, rolling and sliding constraints derived In the previous 
section are summarized below. The fixed distance constrarnt 1s 

h {h- I&.,,- ic, 0,' rm B irn f Bn-‘ra B G ,IjGL(l-hh/p =$ 
- - 

VJ =h he ~~-‘(wn~~~~~r,,j-~~~(w~~Wrn~r*) - 
rl 1 1 IP I” 2 

123 





. 
t is the derivative of the normal vector at the point of contact and srall 

is the expression for Vj used in the rolling constraint. VRrL is the relative 

velocity at the point of contact, 

The matrix equation for the above constraints 

Define L to be the number of these constraints. The matrices &, 

and 4~ then will be L x N and B,, will be L x L. (See Figure 4.18.) 

It should be noted that for the sliding constraint the entries in 

and B3a are not the transposes of the entries in AIs and A,3 . For example, 

B,, has an entry ht. but Als must have the entry /~,h. or the entry 1 (unit 

matrix) 

Flexible Element Constraint 

The constraint equation for the flexible element is equation (4.94). 

The matrix form of this equation is written as 

Definition of the System Matrix 

The system equations, ( 4.128 - 4.133 ) can be written in general 

matrix form as: 

sji =Y (4.134) 

hhere S is defined as the system matrix and the components of equation (4.134) 
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are defined below. 

I 

M 

0 

41 

0 

8 31 

0 

8 613 Ia 0 0 0 

s2a 0 bLu 0 0 

83s 0 0 Bas 0 

&O 0 0 0 

c - 

&I 

42 

VI 

vz 

“3 

% 

(4.135) 
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SECTI% 5 

SOLUTION OF THE SYSTEM EQUATIONS 

The system contains 6Nt6Mt3L equations. The current verslcn 

1s dlmenstoned to handle 30 segments plus the vehicle and ground with 21 Joints 

and20 other types of constraLnts yielding 420 equations. 

Due to the large system size, sparse matrix techniques are 

employed. In addltlon, since M and oare diagonal, special subroutines 

(DAUX,,) were wrttten to produce the reduced set of equations lnvolvlng only 

the constra( nts by block reduction of the system equation (4,135) 

The above equations are solved by subroutIne FSMSOL which \.s a routine using 

a Gauss ellminatLon process specIfIcally destgned for sparse matrlces of the 

type encountered In the model. The current version of FSMSOL takes advan- 

tage of the symmetry when symmetry exists. Although the equatLons are 

wrltten In a symmetrical form, the addltlon of the sltdlng constraint and thtl 

tens Len elements destroy spnetry . 

After FSMSOL has computed f, t, q, and T subroutine DAUX com- 

putes the linear and angular accelerattons from equations (4. 54) and (4. 55) 

SYMMETRY OPTION - ___- 

If either of the symmetry modes 1s exercised modlfLcatlons are 

made In DAUX after the contact routines are executed and before the solvtn{: 



of the system equattons forf,t,$ and T. The following tables lndkcate the 

speclflc symmetrtcal conftgurattons available by speclfylng elements of the 

NSYM array and the corresponding modlfLcatlons In the DAUX routine. 

NSYM(J) = o Normal three dlmenslonal motion for body segment J. 

NSYM(J) = J 

NSYM(J) = K 

NSYM(J) = -K 

Therefore a complete blank card ~111 enable the pro- 

gram to operate In a normal manner. 

The motion of body segment J wtll be restrtcted to the 

x-z plane wtth no lateral motton. Hence It will be two 

dlmens tonal. 

Body segments J and K are to rematn symmetrtcal with 

no lateral motion. The motton of each wrll be replaced 

with therr average and restricted to the x-z plane. 

NSY M(K) must be equal to J. 

Body segments J and K are to remam mtrror symmet- 

rlcal with respect to the x-z plane. Equal but opposite * 

lateral motion IS permttted. NSYM(K) must be equal to -J. 

I 
no change 

i 

I 

fJ’O 

= K(K>J) j fJ=o 

= K(KG) I I fT=O 
I 

-- c - 

f=Ulx, Ulz and U2 
Y - 

no change 

no change 

fJ=1/2(fJffK) 

fJ=fK 

fJ=(fJtfK) /2 
I 

=-K(K>J) : fJ=(fJ-f&2 

= -K(K(T) 1 fJ”fK fJ=fK I 
L I 

* Reference to the x-z plane are to a plane parallel to the x-z lnertlal plane. 
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SECTIOY 6 

COMPUTATION OF JOINT TORQUES 

For purposes of computing torques at the Joint a separate coordinate 

s> stem 1s defined for the joint . The Joint coordinate system 1s related to the 

prlnclpal axes of the segment by the standard yaw, pitch and roll angles as dls- 

played In Figure 6.0. Note that the Joint coordinates are defined for both seg- 

ments that are attached at the Joint and Joint torques are then computed using 

the relative angular orientation and velocity of these two coordinate systems. 

These two coordinate systems are flxed In each segment and do not move relallve -- 
to the segment. 

As an example consider the two coordinate systems presented in Fl;ure 

6.1. The hA and hg dlsplayed there would correspond to the 6 and g2 axes re- 
A 3 

spectlvely. The hi and h; axes would correspond to the G3, 0; axes defined for 

the adJ olnlng segment. 

Joint torques in the program are computed by a choice of three rcutlnes. 

Subroutine VISPR is described in Section 6.1. It 1s used to compute torques In 

the standard ball and pin Joint. A special model of a mechanical Joint texmed 

an Euler Joint 1s described In Section 6.3, Subroutlne EJOINT. This is based on 

the standard Euler angles as displayed in Figure 2.8 using three axes of rotation. 

Either VISPR or EJOINT may be used with or wlthout the global graphic Join: stop 

representation described in Sectlon 6.2. 

The ball or plnned Joint may lock. The Euler Joint may lock on any 

comblnatlon of its prlnlcpal axes. If a Joint goes from a free to a locked state 

or If the Euler Joint changes its state (free or locked axes) a special impulse 

subroutine (IMPLSZ) is called to correct the angular velocities of the segments 

so that the required components of relative angular velocity of the adJolring 

segments (those connected by the Joint) are set to zero. 

The ball Joint 1s either free or completely locked. The pinned Joint, 

of course, can lock on only one axIs, In which case it 1s completely locked. 

The Euler Joint has seven different locked states and one completely free state. 
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The decision to unlock a locked Joint is made by comparing the 

locking torque to an input torque that is prescribed by the user. If the 

locking torque exceeds the prescribed level, the Joint is unlocked. In an 

Euler Joint, the user may specify a breaking torque on each of the three axes. 

The user specifies a minimum torque and a minimum relative angular 

velocity at which the Joint may remain unlocked. If the locking torque or the 

velocity fall below these specified levels, the Joint will relock and the vel- 

ocitiescorrected by use of the impulse routine. 

The spring functions used to define the restoring torque on the ball 

pinned, or Euler Joint are defined in Section 6.1. In this deflnrtion, a linear 

torque vs. angle is prescribed until a specified Joint stop angle is reached. 

For angles greater than the Joint stop, a quadratic andcubic restoring torque is 

added. This effectively defines the Joint stop as a ‘soft’ stop instead of a 

‘hard’ stop. That is, the angular motion of the Joint may actually exceed the 

specified stop but a progressively increasing restoring torque will be applied, 

When the Globalgraphic option is used, the restoring torque can be defined using 

the general function definitions as described in Section 7.5. 

The user has the option of specifying that an impulsive torque be 

applied when a Joint first enters or reenters a stop. In a ball joint, this will 

be applied on either the flexure or twist axis. For an Euler Joint, this torque 

will be applied on the particular axis involved. If the Globalgraphic option 

is used, an impulse may also be specified on the axis determinlng the Global- 

graphic equation 
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principal axes of the 
segment 

[t ,k ,+ J oint coordinate system 

e, : PITCH 

4 : ROLL 

Figure 6.0 DEFINITION OF THE JOINT COORDINATE SYSTEM 
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6.1 SPRING AND VISCOUS TORQUES 

Subroutine VISPR computes the torques at the Joints as functions of 

the relative angular orientation and velocity of the adJoining segments. The 

spring and viscous coefficients specified on the input cards are used for the 

functional evaluation. The coordinates used for the Joint torque computation 

are illustrated below. 

. 

Figure 6.1 JOINT FLEXURE AND TORSION (TWIST) 
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Two orthogonal unit vectors are associated with each segment at each 

Joint. Let hA and hg be the vectors for segment k(k=Jnt(J)) and hIA and hlB 

be the vectors for Segment ~+1. In the rest position (no torques) hA 1s allgned 

with h’ A and hg 1s allgned with hlB. The present input routines allow the user 

to specify the orientation of these unit vectors with respect to prlnclpal co- 

ordinate system of the segment. Thus, for each Joint the user speclfles the 

yaw-pitch and roll angles of the axes of the Joint as they are located relative 

to the prlnlcpal system of segment k and as they are located relative to the 

principal system of segment J+l. If all zero angles are specified for any of 

these segments, the hA vector ~111 be parallel to the z axls of the segment ant 

the hg vector will be parallel to the y axis. 

The flexure angle (e) at the Joint 1s computed from the relation: 

(6.1) 

The magnitude of the flexure torque 1s computed using the flexure spring co- 

efflcients. The torque vector 1s parallel to the vector hA@hrA. 

The twist angle (#) may be computed from the relation* 

where h B 1s the unit vector obtalned by rotating hg through the angle 8 

about the hA@htA axls. In relation to Euler angles 8 1s nutatlon and B 1s 

precession plus spin. 

The rotation operation 1s 

~,=(r)l.hB+(hB-~p.hB) cad6 + me p ah, 
where Jo 1s a unit vector In the hA@h’* dlrectlon. 

The magnitude of the twist torque 1s computed using the torsional 

spring characterlstlcs. The torque vector 1s taken along the h’\ axls 
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For a pinned Joint, only the flexure torque is computed. 

The present routine computes a viscous torque from the magnitude of 

the relative angular velocity vector using the flexural viscous characteristics. 

The torslonal viscous characteristics are not used by the present routine. The 

viscous torque opposes the angular relative velocity. 

The spring (and stop) torques are computed by subroutine EFUNCT 

which uses the following algorithm to compute the torque T from the parameters 

sls s2, s3a s4, and s5, as illustrated in Figure 6.2. 

If I4 2 s5 

T= s$l 

If lel ’ s5’ an additional torque Ts 1s computed as 

Ts = s2(181-s5)* + s3(1e1-s5)3 

If h< 0 (unloading) Ts is modified by 

Ts=s4Ts 

For small values of Ii1 the routine interpolates between the 

loading and unloading characteristics. 

The total torque T+Ts is returned as the function value. 

The coulomb and viscous torque, as illustrated in Figure 6.3, is 

computed in subroutine VISCOS from the parameters Vl,V2,V3 in array VISC . 

The algorithm uses the following expressions: 

lf 16) < V3’ z = V,/(Z-lil/V,), lf 161 > V3' z = 161 (6 3) 

= v1 + v*/x 
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where 1~~1 1s the magnitude of the angular velocity. Thus Vl is the linear 

VISCOUS coefflclent and V2 1s the constant coulomb torque which 1s reduced to 

zero quadratlcally as w + 0. This 1s done for the purpose of avoiding numerical 

Instability in the integration. These effects need further studv. 

I 
- JOINTSTOP 

ENERGY 
DISSIPATION 

8 (RADIANS) 

FIgwe 6.2 JOINT SPRING TORQUE 
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JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCITY AT THE JOINT 

V2 

COULOMB 
TORQUE 

V * 
3 

0 IS THE RELATIVE ANGULAR VELOCITY 

viscous 
TORQUE 

1 ti [ (RAD/SEC.) 

Flgure 6.3 JOINT TORQUE DUE TO RELATIVE ANGULAR VELOCfTY AT THE JOINT 
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JOINT STOP MODEL 

6.2.1 General Features 

Joints always have definite restrictions on orientation which are 

imposed by the internal or external geometry of the Joint proper. Two types 

of restrictions are recognized. The first type, which limits the number of 

degrees of freedom in the Joint, can be treated by holonomlc constraint rela- 

tions, which are discussed elsewhere in this report. This section is concer- 

ned with the second type of restriction, which does not limit the number of 

degrees of freedom, but which bounds the range(s) of variation of the angle(s) 

which express the orientation of the Joint. These bounds are usually termed 

Joint stops (or, on occasion, Joint-stop contours when the Joint has two or 

more degrees of freedom). Since the treatment of such bounds in the case of 

hinge Joints is covered elsewhere in this report, this section is devoted to 

the discussion of such bounds in the case of Joints with two or three degrees 

of freedom. 

It is clear that in the most general case, the bounds on the variation 

of a given orientation angle are functions of both of the remaining orrenta- 

tion angles. For reasons brought out in the next subsection, 6 2.2, the mode L pre- 

sented here is limited to Joints for which the bounds on a given orientation 

angle depend on only one of the remaining orientation angles. As will be 

shown, this restriction of the model leads to a particularly simple descrlp- 

tion of Joint stops in terms of the global-graphic representation. The gen- 

eralization of the model for more general types of Joint stops awaits future 

development . 

The next subsection also provides the groundwork for the model 

formalism which is developed in the third and fourth subsections. In the 

fifth subsectlon of this sectlon the stop-torque formalism 1s applied to the 

spherical-coordinate representation of the lolnt-stop contour 
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6.2.2 The Global-Graphic Representation 

A joint connects two members which are here designated Segment 1 and 

Segment 2. The orientation of the joint 1s completely prescribed by the 

specification of this orientation of Segment 2 relative to Segment 1. Figure 
6.4 depicts three orthogonal unit vectors, G, , Gz , G3 which are fixed rigldly 

In Segment 1, and a unit vector, F , which is fixed rigidly in Segment 2. 

STOP CONTOUR 8 - 

Figure 6.4 JOINT STOP COORDINATES 

q) w 

The orientation of F relative to 1 is completely determined by the spherlcal- 

coordinate angles 8 and ~5 . More generally, the orientation of F can be 

speclfled by two independent coordinates, ~1, , u2 which are functions of e and 

4. 

If the joint has two degrees of freedom its orientation 1s completely 

detemuned by the orientation of i? ; further, any bounds on the orlentatlon of 

? are functions only of u1 and ut. In this case, the bounds on the orlen- 
tatlon of r can be represented by a single closed contour on the surface of a 

unit sphere which is centered at the joint. This representation of the loutt 

stops 1s termed the global-graphic representation. 
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If the Joint has three degrees of freedom, Its orientation 1.5 not 

solely determlned by the orlentatlon of 7, but requires addltlonally the 

speclflcatlon of the relative orientation of a second unit vector, r , which 

15 flxed rigidly in body 2 and which 1s noncollnear with 7 . Further, the 

complete speciflcatlon of the relative orientations of F and 2 , depends upon 

three coordinates uL, uz, y. As before, the orientation of 7 1s still a function 

only of U1 and uz. However, (depending on the Joint geometry), bounds or 

stops on the orientation of i? can be functions of all three coordinates u1 ,u2 

u3 
In this case the global graphic representation of the stops on 7 would 

consist of a farmly of closed contours on the unit sphere, with U3 as the para- 

meter of the family. A slrmlar representation could be introduced for stops 

on the orientation of s’ . 

As indicated in the first subsection, the Joint stop model considered 

here 1s limited to Joints for which the bounds on the orientation of 7 dre 

functions only of U, and Ur . Also the model does not contain provlslons for 

lncludlng those bounds on the orlentatlon of y which are distinct from bounds 

on the orientation of F. 

In applying the model, it 1s important that the coordinate system gi 

GL “43 and the unit vector r are chosen so that the reference orlentatlon (see 

Figure 6.4) is klthln the Joint-stop contour. Also, it 1s necessary that when 

contour 1s expressed in the form 

6=e, i@/ 6.1 

OO@)is a single-valued function of (D . Fortunately this condition is satls- 

fled by the Joints of interest. The version of the model which 1s presently 

programmed (and which is discussed in the subsection 6 2 5) employs the repre- 

sentatlon In (6.1) for the Joint-stop contour. However, the more general 

model developed In the fourth subsection 1s not limited to the representation 

in (6 1) It 1s based on the employment of any coordinates u, ,U, which are 

adequate for the speclflcatlon of the orlentatlon of r. For example, if the 



stop contour bounded 8 In the range 05 Q<;, one could employ 

u,= F - c$ 

zf -T.S, 2 - 

Or, more generally, uI could be equated to F. 2 
3’ 

and uz would be identified 

with F,<, for some ranges of orrentation of r , and with r’;gL for other ranges 

of orientation of F. This particular choice of coordinates would lead to a 

more complicated representation of joint-stop contour than the employment of 

the coordinates 8 and $. However, the evaluation of arctangents would be 

avoided, and so computer running time might be reduced. 

Throughout the development, the equation 

f f&J u,)=o 
(6.2) 

is employed for the Joint-stop contour. This contour represents a hard stop. 

As in the case of the hinge joint , the hard stop 1s replaced by a soft stop. 

That is, no stop torque 1s applied to the joint when the terminal point of 7 

is contained within the joint-stop contour in (6.2). But when the terminal 

point of F is outside the joint-stop contour In (6.2) a stop torque is applied 

to the joint. This torque acts in such a direction to tend to restore the 

terminal point of r to the region Inside the joint-stop contour; and the mag- 

nitude of the torque Increases with the extent of penetration of the terminal 

point of F into the region outside the joint-stop contour. The general 

approach which is taken to obtain a stop torque with the desired characteris- 

tics is brought out in the remainder of this subsection. The detailed develop- 

ment is given in the following subsections. 

The stop torque, c, can be expressed as the sum of stop torques in 

the direction of and perpendicular to the unit vector F . It is clear that a 

stop torque in the direction f tends only to produce rotations of about the F 

axis. Such rotations could not restore the terminal point ofF to the region 

inside the joint-stop contour hence 1s not applied. It 1s clear, therefore, 

that M should be perpendicular to F . This perpendicularity is assumed by the 

relation* 
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(6.3) 

It is convenient to visualrze r as a force applied at the terminal pornt of f . 

In actuality, of course, the desired restoring action is obtained by applying 

the torque % to Segment 2 and a torque -M to Segment 1. 

‘Ihe force?whrch 1s required to obtain restoring action is not unique. 

First, It is apparent from (3) that components of Fwhrch are parallel to 7 

do not contribute to% Therefore, ? will be chosen perpendicular to 7 . In 

the case of a hard stop, Fcould (conceptually, at least) have components 

parallel to the Joint-stop contour. On the basis of symmetry arguments, such 

components would not in general serve a useful function. Therefore, Fwould 

be chosen in a direction perpendicular to the Joint-stop contour. In the 

generalization to a soft stop, it is logical to choose Fin a direction which 

is close to perpendrcular to that portion of the Joint-stop contour which is 

nearest to the terminal point of? . - In accord with the desired character- 

istics of the torque, M, the magnitude of the force, r, should increase with 

the extent of penetration of the terminal pornt of F Into the region outside 

of the Joint-stop contour. The Joint-stop model has been designed so that 

the force 7, displays the characteristics Just discussed. The model is de- 

scribed in the following. 

The function ffur, uz) is defined so that 

(1) f(up+I= 0 on the Joint-stop contour 

(ii) The contour f(u, , u,)- c encloses or is enclosed by the 

contour ff~=, rc,)=o . (That is, these contours do not 

intersect) 

(111) On the contour f fu,, ~2) =@ 1 s a single valued function of P . 

(iv) The surface gradrent of f(uz,u2) is in the direction of the 

external normal to the contour. 

- - 
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Frgure b. 5 depicts the geometry for the determination of the force F. 

Thus figure shows polar ( 8vs@ ) plots of the contours of interest. 

, # 
(u, u*l = f (II, ,u,l 

Figure 6.5 JOINT STOP CONTOURS 

U: , u,’ denote the coordinates of F. The force Fis obtalned from a dlffer- 

ential approximation to the construction described in the next paragraph. 

Through the point ( U: , UL ) the contour 

filet! =fh;4) 
(6.4) 

can be constructed. Then a geodesic of the sphere (depicted by a broken line 

in the figure) can be constructed to pass through the pornt ( u;, LL;) and to 

be perpendicular to the contour in (6.4) at the point. The geodesic will lnter- 

sect the joint-stop contour ( f(u,, ~~]-a ) at some point ( up, ul ). The 

force F is parallel to the geodesic tangent at the point (ui 7 U-t ) (and in the 

opposite direction to the external normal to the contour In (6.4) at the point 

(4, 4 1). The magnitude of the force ? is an Increasing function of the 

magnitude of the vector A 7 given by 

(6.5) 
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In the model, the force F 1s obtained exactly as Just described with 

the exception that fu; -5’) and U; - ZL~ are treated as dlfferentlals, and AT 

and f(uI , uzi- f(u,; uzo ) are evaluated In the dlfferentlal approxlmatlon. 

As a prellmlnary to the mathematical development of the model, an 

expression will be derived for the surface gradient In terms of the general 

coordinates UL, *a. 

6 2 3 The Surface Gradlent 

. 

The surface gradlent 1s JUSt the operator - n’@(E@v] where V denotes 

the usual three-dlmenslonal gradlent operator, andz 1s the normal to the sur- 

face of interest. In the current appllcatlon z 1s equated to 7 . It is con- 

venlent to employ the modlfled surface-gradlent operator given by 

o,= -?,-@(ifOV) 
(6.6) 

where ? denotes the radius of the spherlcal surface. In the case of the unit 

sphere , 
.& 
r= 1. Thus, for slmpllclty, In the rest of this section v,f will 

be termed the surface gradlent of f . 

The fundamental property of the surface gradient which 1s utlllzed m 

the model 1s that the vector given by 

vs f fk, 4 
zcL =ul', uz- u; 

1s normal to F and to the contour 

(6.7) 

at the point ZL~=LL~, ZL~= U; . As stated In the previous subsectlon, f(ulud 

must be chosen so that OS: evaluated at ( u1 , uZ’ ) 1s In the direction of the 

exterior normal to the contour in (6.7). 



The surface gradient of any differentiable function v of uj and ut 

satisfies 

dv=dF~v3v 
(6.81 

where 1~ is the total 

d;is expressible as a 

expressed 

where 

differential of r/ andd? is the total differential of T . 

function of ui and ue . Its total differential may be 

(6.9) 

(6.10) 

The unitary vectors, a; , are not in general orthogonal. Thus, in accord with 

the formalism for nonorthogonalcurvllinear coordinates, reciprocal unitary 

vectors zJ&’ = f, 2 ) are introduced. These vectors are coplanar to the vectors 

XL f; = 1,~) and they satisfy 

where dL*. denotes the Kronecker delta. 
J 

From (6.8) ,(6.9), and (6.11), it is readily concluded that 

(6.11) 

(6.12) 

Equation (6.12) is the general expression for the surface gradient of a function 

1/of Us and uz. 
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6 2 4 The Mathematical Formulation 

This subsection 1s devoted to the mathematical development of the 

stop-torque model described In the second subsectlon. As before, u,‘, tc2’ 

denote the coordinates of 7 , and up, ul , denote the coordinates of the 

lntersectlon of the Joint-stop contour with the geodesic depicted In Figure 

(6.3). From (6.5). 

(6.13) 

k explalned in suusectlon 6.2 2, AF is evaluated in the differential 

approximation. From (6.9) and (6.13) 

(6.14) 

where 

(6.15) 

and < 1s evaluated at ( LL~, uz’ ) . 

Since ( u;, LL~ ) lies on the Joint-stop contour, 

f (CL;, up) =o 

or, employing (6.15) 

f(u; - d U1' Z&-nLLZ)'O 

In the dlfferentlal approxlmatlon, (6.16) becomes 

(6.16) 

(6.17: 

The exterior normal at the point ( ZL~, u, ) of the contour 

f(UIJ u2) =f& 7 u;/ 

146 



is in the direction of the surface gradient 0, f (Ul’, UL’] . From c6.12) 

(6.18) 

Where %I’ is evaluated at ( Ui ,ui ). 

Now,AF is the chord of the geodesic depicted in Figure 6.5. There- 
fore, in the differential approximation,A? is directed parallel to the sur- 

face gradient in (6.18). This condition and (6.17) uniquely determines A uI 
and A u2. To evaluate fJ U1and A Ut, (6.11) is employed to reexpress (6.14) 

In this form (dot 5 
1 

and 82 wrth 6.14 to get coefficients of 8’and ‘i’ ) 

A f-= ~,~LAu,,$~~ A+ 
c 1 2’ 

(6.19) I- -l 

In the expressions for the final solution, the superscript 1 on U: , IA: 

is dropped so that u,, flare the coordinates of 7 . The stop torque, Z, 

defined in the second subsection, is given by 

SO If ( Us, G”) is within the joint-stop contour (6.20) 

M= - A (/d ?/) FAf,’ otherwise 

A (/A?/) denotes a suitably chosen non-negative, increasing function of the 

magnitude /A ir’/ of n ??, which is given by 

The unitary vectors zL are defined in the previous subsection, and 

(6.21) 
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The conditions on the function fh,, u,) are grven In the second subsection 

of this development. 

In the next subsection, %? is evaluated for the coordinates e and @ . 

6 2 5 Appllcatlon to Spherical Coordinates 

In the computer program, the spherical coordinate representation 

e = 8, (4) 

is employed for the Joint-stop contour. To evaluate the stop torque, ??, in 

the coordrnates 0,@ the formalism of the above subsection is applied with 

u,=e, uz=G3 

zl= 2 ) 

Here $ denotes a unit vector in the direction of increasing 8 and $ denotes a 

unit vector in the direction of increasing 4 . 

where 

The evaluation of Gis straightforward. The final expression is: 

for 0 c_ 9, /cq z= -Af/n~/)(&srnete^e;J 
. 

and for 0 > 8, (Q), G-0 stnze f (e,‘)’ 

*f= de0 l$) 
0 

a@ 

The non-negative function A f/A ?) is computed by employing the force versus 

deflection subroutine in the computer program. As noted above, the torque 

i? 1s applied to body 2 and a torque -%? is applied to body 1. 



6.2.6 stop contour 

The representation of the stop contour is taken from the work of Dr. 
* 

R.E. Herron where he uses a trigonometric polynomial of the form. 

The degree of 6 depends on the particular joint. Stop contours and 

the corresponding numerical values for the coefficients as supplied by the 

Biostereometrics Laboratory of the Texas Institute for Rehabilitation and 

Research are presented in Figures 6-6 thru 6-14. 

* See equation 11 pg 40 of Reference 14. 
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6.3 EULER JOINT MODEL 

As a means of more accurately modeling mechanical joints used in 
dummies, a joint termed an Euler joint illustrated in Figure 635 has been 

defined. For purposes of discussion consider a composite joint attaching 
segments 1 and 4. 

Figure 6.15 EULER JOINT 

The composite joint itself is comprised of two segments; segments 2 

and 3, and 3 pin joints. 
Joint 1 connects 1 to 2, rotation about h)r 

Joint 2 connects 2 to 3, rotation abouthz 

Joint 3 connects 3 to 4, rotation abouth3 



The equations of motion are: 

with the constraint equatrons: 

and angular constraints : 
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Where hJ, hz,/?a are pin vectors parallel to permitted axis of rotation. 

The wi,f, are constraint forces, and tz , t, and t3 are constraint torques 

at the Jornts. Also rz ,ra and rJ are additional torques generated at the 

Joints (hnJ 1s pin vector h, as measured ln system n.) 

Define an axis system in segment 1 where the 3 axis is allgned with the 

pin vector h . Leth! be the relative direction cosine matrix associated with 

this system such that a vector 3 in the reference system will be transformed 

into the local system byj;,,,t = H= 2x prer . Define a reference system in 

segment 2 whose 3 axis 1s aligned with the pin vector hJ and whose cs axis is 

aligned with pin vector hz . Also define a system In segment 3 whose2 axis 

1s aligned with the pin vector h, and whose x axis is allgned with pin vector 

h3’ (Note that hl*h3 = cos 0, hl’h2 = 0 and h2*h3 = 0) Define an axis 

system in segment 4 whose2 axis is aligned with the pin hj . Let//c be the 
relative direction cosine matrix in a manner similar to that used for segment 1. 

Let #J be the rotation of segment 2 relative to segment 1 about the h, axis. 

Let 8 be the rotation of segment 3 relative to segment 2 about the & axis. 

Let p be the rotation of segment 4 relative to segment 3 about the ha axis. 

Then 

here Tx(e) lndlcates a rotatron through an angle 0 about the local x axis 

and TZ($) Indicates a rotatron through an angle 4 about the local z axis 

Also note that Q(v/<(e/7jh/ IS the standard Euler transformation relating 

segment 4 to segment 1. Where 9 is precession 8 is nutation and j& is spin. 

Make the following simplifications : 

(1) The masses and inertias of segments 2 and 3 are negligible 
m2-??+g&=fz+0 

(2) The dimensions of the Joints are neglrglble 

r4? = rJ2= rJ2= r3s= 0 
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(3) No forces or torques act on segments 2 and 3 other than those 

produced by constraint forces and torques, or torques generated 

by the relative Euler angles at the Joints themselves. 

u22 = u23 = 0 

92 = U13 = 0 

These assumptions reduce the model to two effective segments (1 and 4) con- 

nected by a massless Joint. 

The reduced set of equations are: 

Since 

and 

fir/f2 =/$ 
t2 = t1 - ‘2 + T2 

tg = t2 - T2 + T3 

If we let t = tl - T 1 

We may write the equations as 

For the axes of rotation we have: 

nutation 



Where Ii= and H+ are defined such that when 9 = 8 =pO, the local x, y, z 

axis of each system are aligned. 

Explicitly for the I//t in the inertial reference system we have 

The relatrve angular velocity is 

Thus we have 

‘ 

J 
, 

It should be noted that a singular case arises when cos 8 =_‘r . For these 

cases it is impossible to distinguish between p and jk from the rotation 

matrix C T~(juj 5 Ce) +&I alone, some auxiliary information must be used. 

Consider the case where all axes are free - 

then 
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where 

Where f, g, h are the torques generated on the free axes. 

It should also be noted that when sin e-0 the components of 

angular velocity of segments 1 and 4 prOJeCted on the h,@hLaxls must be 

equal. This 1s a constraint in the system 

Consider the case where the precession axis 1s locked. The constraint 

torque t must Ile on an axis which 1s perpendicular to h2 and h,. This axis 1s 
C 

l 

hl = h2 x h,, h,* will be a unit vector since h, . hj = 0 

where 
f= -t&&& f&+ -&yb*-hh, 

* 
t 

C 
= uh, = hl* t h * 

c l 

The constraint equation 1s a statement of the fact that the components 

of angular velocity on the h, axis of the adJoinlng segments must be equal. 

That is, 

h,: Dl-‘wz -&-’ w9 = 0 
[ I 

When the system 1s constralned we will write the equations of motion as 

hlth the constraint (I - hl*hl* ) tc = (I-P) tc = 0 
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Where P is a projection operator with the property Ptc * tc 

. 

The constraint equation in acceleration form may be expressed as 

Where 
P = h,*hl 

*I- 
= h,*h,*. 

hz has the angular velocity of segment 1 and h3 has the angular velo- 

city of segment 4. 

Similarly if the spin axes is locked we have 

t= -dc-fh,-ybz 

where 
tc = cd,* and P- h*b 

*T 

and h3* = hl x h2 

The rest of the development is the same. (hz has angular velocity of 

segment 1 and /7& has the angular velocity of segment 4.) 

If the nutation axis is locked, then we find that 

where t, r oLhz and P = h2*h2*T 
* 

h2 = h2 

When any two of the axes are locked the unlocked axes 1s treated in 

a manner identical to that of a pin or hinge Joint. The constraint torque 

must be perpendicular to the axes 

and the constraint equation is derived from 

In this case 

f= I-h;hj ‘=-I”?.@ (hj@ 
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When all axes are locked the constraint equation 1s 

and P = I, the ldentlty matrix. 
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, . 

Table 6.1 

SUMMARY OF EULER JOINT RELATIONSHIPS 

IN0 LOCK I I P 
I 

~ TORQUE 

hl *i&w 
*. * 

h, h2*Aw 

h&'Aw 

-i, h,'Aw 

4-1, h2.Aw 
-h3h3+Aw 

0 

none 

Aw=D, -1 wr -D-'w 
11 

* 
hl = h2 x h3, h,* = h2, h,* = hl x h2 

@‘+os e = 4 - (Awl > 

e' = /$ (Awl 
-4 sin 9 = hl* * AW 

. . 
p case f Jo = hj' (Aw), -JI sin 8 = h,* * Aw 

Each of the functions f, g, h is defined as the sum of a spring torque, 

a viscous and a coulomb torque as defined m Section 6.1 and illustrated in 

Figures 6.2 and 6.3. 
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SECTION 7 

FORCES PRODUCED BY CONTACT 

The present version of the program has four basic contact routines 

(1) elllpsold with plane 

(21 elllpsold with elllpsold 

(3) elllpsold with restraint belt 

(4) ellipsoid with air bag 

Each segment has an elllpsoldal contact surface defined for it. 

Additional elllpsoldal and/or planar surfaces (flnlte rectangles) may be 

associated with each segment The vehicle may have planar or elllpsoldal 

surfaces. Any comblnatlon may be used with contact routines 1 and 2 The 

restraint belt may be attached to any segment (usually the vehicle) at two 

anchor points (these must be separate) and 1s assumed to pass around the 

prlnclpalelllpsoldthrough a speclfled point associated with the segment 

Belts mav be associated with any segment, but It is assumed that the belts lit 

In a plane determined by the anchor points and the speclfled point in the 

elllpsold The number of belts (8 maxlmum) 1s llmlted only by storage, 

In each of the first three tvpes of contact, the force 1s determined 

b\ a force deflectlon routine which alloks for energy losses (hysteresis), 

permanent offset, and lmpulslve forces The force deflection 1s associated with 

each paired contact, hence it 1s Important to speclf\ a mutual force deflectl3n 

characterlstlc which allows for the specific palred contacts being consldered. 

For example a head elllpsold contacting a planar dashboard should be asslpned 

a different force defelctlon response than the upper torso felllpsold) contacting 

the same planar dashboard. Proper deflnltlon of the mutual force deflectlon 

allows the user to partially account for the deformation of the contactlnE 

segments . 

It should be noted that the contact routines which are Inputted 

force-deflection characterlstlcs compute the force as a function of onlv one 

parameter (related to the penetration distance) and applvthe force at a single 
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point. Hohe\. er, the modular structure of the program permrts easy insertion of 

more sophisticated routines in which, for example, the force might also be 

made a function of penetration rate and/or the contact area. 

The air bag routine is special in that the air bag IS assumed to be 

ellipsordal and contacted only by surfaces (occupant segments or vehicle 

reactron panels) that also are ellipsoids. No contact forces are computed until 

the air bag is fully inflated and the motion of the bap is then dynamically 

integrated. Although several segments may contact the air bag, no provrsion 1s 

made for the interaction of simultaneous contacts, i.e., the volume and the 

effective area associated with a segment (or reactlon panel) contact with the 

bag are computed separately for each contact.* The bag pressure 1s determrned 

from the total change of bag volume, which is the sum of the volumes computed 

for the separate contacts, and the forces on the bag and the contacting elements 

are computed using the pressure and the effective contact areas. The computer 

program currently provides storage for a maximum of five air bags. 

A separate subroutine is used to compute the force resulting from 

a specific type of contact. The general pattern for defining the forces and 

torques produced by contact is the following: 

1. Detect contact. 

2. Determine the parameter (penetration) for use in the force deflectlon 
rout me . 

3. Compute a normal force and friction force. 

4. Apply the total force and torque on one segment. 

5. Apply the corresponding reactlon force and torque to the other 
segment. 

. 

The following sections develop the method used in each of the four 

types of contact. 

*It should be noted that simultaneous bag contacts, 
result in errors due to overlapprng of volumes and 
for in the computations. 

if too close 1) spaced, can 
areas which 1s not accounted 
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7.1 PLANE - ELLIPSOID CONTACT (SUBROUTINE PLELP) 

The geometrLca1 configuratLon of the plane elllpsold contact 

along with the appropriate variable defLnltlons LB presented In Figure (7.1). 

The following equations refer to an ellipsoid Am attached to segment m con- 

tactlng a plane Ph attached to segment n. 

At the poLnt of maximum penetration 

(7.1) 

r- 1s a scalar quantity 

t- LS the outward normal to the plane Ln m’s reference system. 

9 
1s the outward normal to the plane in n’s reference system. 

The elltpsoid equation 1s wrLtten In the form 

therefore 

or 

Thus results In 

rmT A,r,=l 

,u2= t TA,-zt 

p=/t 'Am-? 

The penetration dtstance p 1s gLven by the followLng equation 

where /‘r is the distance of the plane from x n (see Figure 7.1) 

For p co no penetratLon has occurred, and Lf p > zp, 

the elllpsold has fully penetrated. In both of these cases no contact 1s assc.med 

and therefore no forces are generated. The assumptLon of no contact for fill 

penetration 1s a crude method of preventLng an erroneous contact when an 

object comes behlnd a plane from the stde. 
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The point of force application can be specified as occurring 

at any point between the point of maximum penetration to the point of inter- 

sectton of the vector rm with the plane. This point 1s the center of the ellipse 

formed by the plane- ellipsoid intersection.* 

Then 

defines the point of application of the force as measured from the c. g. of 

the segment m. Then 

is the same point as measured from the c. g of segment n. 

If the plane c is bounded (i. e a finite rectangle) the pro- 

jection of y, on the plane is checked to see if it lies on the rectangle by 

compa ring 

tl, t2, t3 are vectors defining the plane, tl is the outward normal 

to the plane. The scalar quantities ,LT~,P~~,~~, a,, a, define the 

location and size of the plane. 

If/% or/B3 is zero or negative this check will not be made. 

The magnitude of the normal force is computed by the force 

deflection routine usmg the penetration distance and the specific material 

properties. The normal force is then used to generate a friction force ex- 

tstlng between the two contacting surfaces. Information concerning the rela- 

tive velocity 1s important here, therefore the following equations are 

needed. The relative velocity between the surfaces at the point of contact 1s 

* If the plane 1s soft and the elllpsold 1s hard, a value of I$=0 seems appro- 
prlate. If the plane 1s hard and the elllpsold 1s soft, a value of .,-‘=l seems 
appropriate. 

171 



INERTIAL REFERENCE 

Fiwre 7.1 PLANE-ELLIPSOID CONTACT 



computed in m’s reference as 

. 

The magnitude of the normal component is given by t'V,. , 

The tangential component then ts 

(7.7) 

The friction force is computed as Cf (coefficient of friction) 

times the normal force. If the magnitude of the tangential velocity is less 

than one unit a ramp function is applied which allows the friction force to 

decrease to zero as the tangential velocity decreases to zero. 

The total force LS then computed as 

(7.8) 

The force -f ts applied to segment n and f is applied to seg- 

ment m. The torque - 4/n 8 f is applied to segment n and Ym@f to seg- 

ment m. 

7.2 INTERSECTION OF ELLIPSOIDS (SUBROUTINE INTERS) 

In the program It is necessary to recognize the intersection 

of two ellipsoids A and B. For the ellipsoid- ellipsoid contact routine 

(Subroutine SEGSEG) both the exterior and interior contact (ellipsotd A IS 

interior to ellipsoid B) are considered as indicated in Figure 7.2. For the 

airbag routine only the exterior contact is considered. The technique used 

1s based on the following algorithm. 
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EXTERIOR CONTACT INTERIOR CONTACT 

Ftgure 7.2 ELLIPSOID-ELLIPSOID CONTACT 
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7.2.1 Ellipsoid-Ellipsoid AlgorLthm 

If an exterior contact 1s specified the ellipsoids A and B are 

expanded or contracted about their centers until a single point of contact 1s 

achieved. If contraction was necessary to establish this single point of 

contact the elllpsotds are said to intersect, otherwise no intersection 1s 

assumed. 

If an internal contact 1s specified, ellipsoid A 1s contracted 

and ellipsoid B 1s expanded or vice versa until a single point of contact 1s 

a thieved. If a contraction of ellipsoid A (expansion of B) was necessary to 

achieve this single point of contact an intersection 1s assumed, otherwise no 

intersection is assumed. 

This algorithm is executed by subroutine INTERS. The equa- 

tions are described below. In the current version of the program a memory 

knowledge LB used, hence the algorithm may fail for large penetrations. This 

1s provided which uses the last solution as the starting point for a new 

solution. Use of this prior knowledge should reduce the number of lteratlons 

which are done to obtain a solution. 

Consider the case illustrated In Figure 7.3 of two ellipsoids 

A and B which Just touch at a single point. 

Figure 7.3 ELLIPSOID-ELLIPSOID CONTACT GEOMETRY 



The basLc geometrical relatlonships are then 

q&A/Y = -22 

#0(x-mj=n 

where n IS the normal directed outward from elllpsotd B and 

g2 are scalars. 

For an exterior contact V,p are both positive and for an 

Interior contact (A LB Interior to B) V, ,U are both negative. Hence In ekher 

case 

which yields VAX- -0(x-m) 

fi/A f 0)x= Bm 

(x- m) = - V (VA f 0)-lA m 

Thus the value of the single poLnt of contact X 1s determlnec 

by the parameter V . 

The baste equations of the ellipsoids are 

Let 

and 

X*Ax=l 

For a partLcular X 

If t"A fv/ ’ 1 elllpsotd A has been expanded, 1. e x lies outstde of the elll>soid 

If fAfy/ <1 elllpsotd A has been contracted, t. e x IS lnstde the elllpsol1 
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Now define the function g(v) such that 

and/or 

g(V) = fA (V)- fB (VI for exterior contact 

g(v) = &&- f0 k! for interior contact 

The single point of contact IS then determined as the value of 

where g(V) = 0. 

Investigation of the equations shows that solving for the V 

where g(3) = 0 IS equivalent to solving a sixth degree polynomial in Y . 

Rather than solve the polynomial a Newton-Raphson procedure is used where 

g(v) 1s expanded in a Tayler series. 

Since It is desired that q(y tdvj= 0 then 

This procedure is Iterated until a specific degree of conver- 

gence is achieved ( d&$’ 
I I 

L $ ) or until a specified number of steps have 

been executed and convergence has failed in which case an error message IS 

printed. 

The initial value of V 1s estimated as 

for the exterior contact and the negative of this for interior contact. Th1.s 

produces a v of about the right order of magnitude. 
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Usmg the expressions for fA and fg,the followmg equations 

result 

for exterkor contact, Q-Q% _ q&jlfYj df, 

dv dv dv dV 

d9 l dfA dfazp--)p and for mterlor contact, -= - p - I 
Jr 0” 

dv /ffA dv dv fAi‘ dv 

1 
The functions fA, fg and f are illustrated below as functions of 9 . 

A 

Y<O Y’O 

INTERIOR CONTACT EXTERIOR CONTACT 

Figure 7.4 ELLIPSOID FUNCTIONS FOR INTERIOR AND EXTERIOR CONTACTS 
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When the solution 1s obtained, the expansion factor LB 

If no solution is obtained after 50 Iterations, the statement 

“INTERS ITERATION DID NOT CONVERGE” 1s printed and the program 

continues. 

7.2.2 Depth of Penetration for Ellipsotd-Ellipsoid Contacts 

The depth of penetration for the ellipsoid-ellipsoid contact 1s 

computed by subroutine SEGSEG by the following algorithm, using the results 

of subroutine INTERS. 

1. For an exterior contact where the ellipsoids have been 

contracted by an amountq as determined by subroutine INTERS 

they have a single point of contact at the point x when contracted. 

The location of the same point on A when not contracted is 

and on B 1s 

The vector between these points is then 

x,-x, =q -1)m 

The depth of penetration, p, is taken as the magnitude of this 

vector i. e. 
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2. For an Internal contact,A has been contracted and B 

expanded. Hence, 

4? = K/f 

XB = &f (x-m) tm 

Then 

The depth of penetration 1s then taken as 

7.3 RESTRAINT BELT CONTACT 

The CVS IV program provides two options for modeling of belt restraint 

systems' (1) the original method, which is described in detail below and (2) 

a new approach developed for the Air Force Aerospace Medical Research Laboratory 

at Wright-Patterson Air Force Base which allows modelinp of interactive belts 

that can slip over multiple deformable segments (References 5 and 6) 

In the simpler treatment, each restraint belt is assumed to lie in 

a plane defined bv two anchor points attached to a segment (usually the vehicle) 

and b\ a fixed point on a contact elllpsold rigidly attached to some other 

segment (see Figure 7 5) The calculation of the belt length from the fixed 

point to the two anchor points 1s done separately The friction of the contact 

between the belt and the segment ellipsoid may be assumed to be either zero or 

lrfinite. In the zero friction option the total belt length is used to compute 

the strain and a single force-strain history is used to determine the force 

which 1s applied equally at each of the tangent points In the infinite 

friction option each of the partial belt lengths (one from the fixed point to 

anchor point A and the other from the fixed point to anchor point B) are tre,ited 
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CENTER OF ELLIPSE 

-FIXED PT. 

TANGENT PTS. 

‘CENTER OF ELLIPSOID 

Axm INERTIAL REFERENCE 

Figure 7.5 RESTRAINT BELT GEOMETRY 
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independently Separate force-stralnt histories are carried for each part 

resulting in different forces. It 1s assumed that the force-strain functions 

are defined in such a manner as to account for deformation of the contact 

ellipsoid (1 e , they are mutual force-strain functions). 

The center of the elllpsold 1s used as a reference for the calculatlol 

of the tangent points and the belt length. 

The following vectors are defined: 

3AJ36 - location of anchor points w. r. t. the ellipeold 

Jj,G - vectors from the anchor points to fixed point 

4 - vector defining the belt plane 

~11 quantltles such as these are matrices in the reference system of the segment 

associated with the contact elllpsold. 

(7.9) 

The distance, - , 
B 

of the center of the ellipsoid to the belt plane 

is computed by 

(7.10) 

An ellipse ts formed by the LntersectLon of the belt plane with 

the elllpsold. The center of the ellipse 1s given by: 

(7.11) 

E 1s the elllpsotd matrix. 
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‘.3.1 Lalculatlon of the Tanpent Points 

The belt plane is illustrated in Figure 7.6. 

Let 

Since x, z, and p terminate In the belt plane, the following re- 

lationshlps hold, t *P=f- ~=t.y 

yields 

(7.12) 

p may now be written; 

p=x t/qjJ-x)+7to E.3 (7.13) 

Since z-p 1s tangent to the ellipsoid It must be perpendicular to the normal 

at p. Applytng thus yields. 

f$-P)*O=* 
and since p lies m the ellipsoid the ellipsoid equation states that p .Ep =I. 

(7.14) 

To determine 7 

(7.15) 
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A 

-CENTER OF ELLIPSOID 

Figure 7.6 ELLIPSE IN BELT PLANE 
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The choice of the sign of 7 distinguishes between the possible 

tangent vectors from the anchor pomts to the ellipse. The possible belt plane 

configurat\ons are lllurtrated In Figure 7.7. Note that If the fixed point does 

not lie on the arc of contact the belts are assumed to be attached directly to 

the fixed pomt as tn (d) of Figure 7.7. 

Determination of the arc length begins with the definition of a 

right handed coordinate system UC, up, Tc as; UC IS the unit vector III the direc- 

tlon of the fixed point c from the center of the ellipse, Tc ts the vertor defining 

the belt plane and Up= Tc @UC 

Let P=xfuc)~y(upJfx~ , be a vector from the center of 

the ellipsoid to a pomt on the ellipse. Applying the equation of an ellipsoid 

yields : 

(7.17) 

The values of x and y are computed for the two tangent points. Denote them 

as ‘YA ’ YA then xg ) yB and 

(7.18) 
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(d) 

Solld Lmes Indicate 

Accepted Solutions 

Flgure 7.7 BELT CONFIGURATIONS 
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The arc length is then computed by Simpson’s Rule integration 

using (a, b, c, step size and 9,) as input. The Function Routine Elong per- 

forms this operation. The form of the Integration LS found by considering the 

following equations : 

Write the equation of an ellipse: 

22 2+ .MzxL/f cy2=r 
(7.19) 

Let K=rcosQ, y=rscne 

Then 1 I 
r= /J d cos2e+ 2h52ne c05e +CsdQ 

(7.20) 

The arc length ds is; 

(7.21) 

Substituting for r yields 

JT= r 2jx 

The equation for the arc length L is then given by: 

(7.22) 

The sign of L will be defined to agree with the sign of 8, , 

The following assumptions and/or restrictions apply to the 

derivation and use of the belt routine: 

(1) Anchor points A and B are distinct, therefore A, B and 

the fixed point on the ellipsoid are sufficient to define a plane. 

(2) The fixed point lies on thearc of contact from tangent 

point A to tangent point B. If the fixed point does llsf lie on the 
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on the contact arc, the belts are run to the fixed point and the 

arc lengths are set to zero. 

7.4 AIR BAG COWACT 

The alrbag model LS based on the assumption of a stretchless 

bag of ellipsoidal shape which Interacts with contact ellipsotds attached to 

selected segments of the crash victim or the vehLcle*. Each InteractIon of 

a contact ellLpsold and the bag LS treated separately by the geometry routme 

which computes the decrease In volume of the bag, the effective area of the 

contact and the force and torque per unit pressure. After all the contacts 

have been consldered the total decrease In volume 1s used to compute the 

pressure of the gas In the bag and then the forces and torques are applied to 

the various segments. 

In using the atrbag at least one contact ellipsotd must be attached 

to the vehicle. This 1s called the primary reactional panel. A pomt 1s speci- 

fled on this panel as the deployment point. At the begmnLng of the program 

(time = 0) the bag IS assumed to have zero volume (zero size) and IS located 

at the deployment pomt of the primary reactlon panel, after a speclfled time 

delay the bag IS inflated by usmg the gas dynamic relations for the choked 

flow of gas through a nozzle. The gas source 1s a high pressure tank of con- 

s tant volume, that the total gas which has come through the nozzle, would 

occupy at atmospherLc pressure. Until this computed volume plus the volume 

of the tntersectlons from the contacts reaches the geometric volume of the b,lg 

* The contact elllpsotds attached to the vehicle whLch are used by the airbag 
routines are distinct from the other contact elllpsotds In the program and 
are referred to as reactton panels ln the program comments. The loca- 
tlon and orlentatlon of these panels IS arbitrary. 
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(when fully inflated) the bag is assumed to be at atmospheric pressure and 

hence no forces are produced. When this volume reaches the geometric volume, 

the bag 1s said to be fully inflated and the addltlon of more gas from the 

cylinder or an increase in the volume of lntersectlon will cause the pressure 

ln the bag to increase and thus produce contact forces on any segment inter- 

sectlng the bag. 

During inflation the size of the bag is determlned by scaling 

the semr-axes of the elllpsord by the cube root of the volume. The center of 

the bag lies on a vector which has one end at the deployment point and IS para- 

llel to the X axis of the primary reactlon panel but in the minus X-dlrectlon, 

and the distance is equal to the semi major X axls of the sealed bag from the 

deployment pornt. 

When the bag 1s fully inflated it 1s moved dynamically. A mass 

and inertia matrix is assigned to the bag. Until fully inflated the orlentatron 

of the bag with respect to the vehicle IS held constant and equal to Its inrtlal 

orientation. The dynamic motion of the bag 1s updated by the program integrator. 

An artificial spring force is applied at the end of the positive X axes of the 

bag and 1s exterior to the primary reaction panel. This was done to hold the 

bag to the panel, 

7.4.1 Geometry of the Alrbag During Inflation 

The alrbag geometry during the inflation process IS illustrated 

in Figure 7.8. 

189 



VEHICLE REFERENCE POINT 

PRIMARY REACTION PANEL 

DEPLOYMENT POINT 

AXIS OF PANEL 

Figure 7.8 AIRBAG GEOMETRY DURING INFLATION 

During lnflatton the follownrg algortthm 1s used to compute 

the center of the alrbag. 

Let 
b 

locatlon of the center of the primary reactton panel with respect 
to the vehtcle reference 

jd 
be the location of the deployment point wtth respect to the center 
of the panel 

% 
be a unit vector Ln the positive X directton of the panel 

a be the scaled semt-axls (X axLs of the alrbag) 

3 b 
be the location of the center of the alrbag with respect to the 
vehicle orlgtn. 
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The velocity of the c.g. of the bag is computed as the time 

derivation of this expression plus the velocity of the vehicle. 

It should be noted that In the present coding of the program lt 

is tacitly assumed that the X axis of the bag 1s parallel to the X axis of the 

primary reaction panel because the above algorithm does not consider the 

orientation of the bag. This assumption affects only the computation of the 

artificial spring force which is used to hold the bag to the panel. The spring 

forces applied only lf the end of the X axis of the bag is exterior to the panel 

and IS proportional to the distance of this point from the deployment point. 

Hence, If the bag X axis 1s not parallel to the X axis of the primary panel the 

only error would be In the computation of a possible spring force when the bag 

is moved dynamically. 

The scaled semi axes of the bag are computed by the following 

algorithm. Let alD bl, l c be the semi axes of the fully tnflated bag as speci- 

fied by input. 

Then the geometric volume of the bag is 

V 
g 

= (4/3) 3 a b c 
111 

Let Vb be the mstantaneous volume of the bag computed from the gas dynamic 

relations. 

Then 4 
a = a vb 

0 1 v 
Et 
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vb 
‘/3 

c = c 
1 

0 
v 

g 

are the semi axes during tnflatlon. 

The components of lnertla of the bag per unit mass are com- 

puted tram the relations 

4+X = !b12 t cl’) 15 

(‘“vy = (ai2 f cl21 /5 

Pzz = (al 2 t b12) /5 

vhtch are the prlnclple components of lnertla for a thin elllpsold (elllpsotdal 

shell). 

7.3.2 DynamLc Motion of the Air Bag 

ithen the bag 1s fullv Inflated the sum of the forLes and torques 

LL:I,IS. on tile bag dre used to determIne the alrbag posltlon, orlentatlon and 

\c !ocltlCS iI\ lntecratlon of the cquatlons of motion The ba$ posltlon and 

\tlocit I- rlpdnted onlb at the completion of a successful maln program 

lntt 7 stun 5tc,) irid li held ionbtdnt during the InteSratlon sten 



7.4.3 Air Bag Contact Geometry 

Figure 7.9 AIR BAG GEOMETRY 

Subroutine EDEPTH computes the points of maximum penetration(i. e. 

is 

p,lp,- psi’ (7.W 

If P 1s less than 10 
-6 

no further computations are done, zero penetration ts 

assumed. 

If P 1s greater than or equal to 10 
-6 

, two orthogonal planes are defined con- 

talnlng the line from Pg to PA, using subroutine ORTHO. 
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In each plane the elllpsotds are replaced by circles wLth the same radii of 

curvature as the ellipsoids. 

Two cases are considered: 

Case I: The radius of curvature of the alrbag r* LB greater than the 

radius of curvature of the contacting ellipsoid rB . Two 

circles are constructed with a radius r =f$ -r&/2 and 

center located a distance rA ’ ra from the centers of the r=--- 
C 2 

circles A and B. These circles are located such that they are 

tangent to the cLrcles rA and r0 as shown m Figure 7.10. 

The airbag ts deformed to the shape descrtbed by the arc 

1-z-3-4-5-6-7. This arc 1s the same length as the arc along 

the circle A from l-PA-7. This may be established by con- 

sidering the angle $8 m the figure. We have 

(7.24) 

The lme from 2 to 6 ts tangent to the circles. PoLnts 2 and 6 

are the same distance from the center line as are the centers 

of the tangent clrcles. 

This distance Cu: 1s 

ol= rc2- fGc-ip12 (7.25) 

The volume of revolution of a sector of a circle as shown In 

the figure below 1s 

(7.26) 
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I 

Figrre 7.10 CASE I AIR BAG CONTACT GEOMETRY 
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And the volume of a rtng as below IS 

Hence the volume of the shaded area In the figure above 1s 

V= 77 rA3 E/3- C-OS g?J //- .0&/3)] 

f sy rB3 [q3 - Cos P (f- COs2#/J] 

where 
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Case 11: The radius of curvature rA 1s smaller than rB 

Figure 7.11 CASE II AIR BAG CONTACT GEOMETRY 

In this case no tangent circle IS constructed since the arc 

length along the bag is greater than the arc of the contacting 

surface. 

Alpha, oc 1s computed as the distance to the point of lntersec- 

tion as follows: 
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The volume 1s 

(7.31) 

(7 I32) 

and COS tiB= l-ff+~-r~)/rB 

It 1s now possible to write 

After the above computations are made In each plane the volume of lntersectlcn 

1s computed as the average of the volumes of revolutLon obtained Ln each plane 

and the area 1s estimated as 7~ times the product of the tii (the area of our 

ellipse). 

(Note: If the penetration 1s greater than the radius of curvature of the air- 

bag In any plane the computations are done by replaclng the radius of curva- 

ture rA wLth the penetration pB . This serves to 1LrnLt the volume Ln cases 

of extreme penetration where the algorithm 1s probably no longer valid). 

The forces on the bag and on the contacting surface are assumed 

to be applied at the point 5 . A frlctLon force IS computed which apposes 

the tangential relative velocity of the two surfaces at this poLnt using a frlctiol 

coefficient supplied by the user. A ramp function 1s used to 1lrnLt the fractional 

force for small relative velocltLes. 
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7.4.4 Depth of Penetretlon for Air Bag Routines 

(Subroutme EDEPTH) 

The airbag routines which consider the mtersection of elllp- 

soid contact surfaces with an ellipsoidal airbag require the points of maxi- 

mum penetration. Intersection 1s determined by subroutine INTERS as de- 

sired In Section 7. 2.2. If an intersection is detected then subroutine EDEPTH 

is used to compute the points of maximum penetration. The geometry of the 

ellipsoid-airbag contact 1s illustrated In Figure 7.12. 

Figure 7.12 ELLIPSOID-ELLIPSOID PENETRATION 

Consider ellipsotds A and B whose centers are separated by 

the vector m. It ts desired to find the point X on A and Y on B such that 

the distance /q-X/ is a maximum and represents the maximum penetra- 

tlon in the region of intersection of the ellipsoids. 
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At the point of maxLmum penetration, the vector y-X ~111 be 

r7llgned with the normals at the ellLpsoids. That 1s 

rXAx= y-x=-zM(y-m) 
(7.34) 

where X- A X=1, (q-n@ (y-m) =I and 3 and h are negative scalars. 

Ellminatlng x we get 

Thus 

y-m=-(hVA5dA tula) -i An 

If y - m 1s known x is given by 

x= y+zu(y-m) 

The scalars L and t3 must be chosen such that 

(7.35) 

(7.36) 

(7.37) 

x.Ax=l = (y-m)- 5(y-m) (7.38) 

The procedure used is an lteratlve Newton Raphson scheme. Starting values 

of iz, and 9 are estLmated. From these y - m and x may be evaluated. 

The elllpsotd equations are considered as functions of A and 9 . That 1s 

and 

f(iQ')=x~A,w (7.39) 

y(il,~~=fy-mj.0(y-m)-r 

DetermlnLng A, fl such that f/;t,t'/=yfh,t'l=o 

Using a Taylor series expansion yields 



(7.40) 

Thus JA and 69 may be estimated from the equations 

(7.41) 

Replace it by it f 6it and fl by 1’+6t) and repeat the procedure until 

are less than some test. 

To evaluate the partials it IS necessary to have 

DifferentLating wLth respect to 1L,V yields: 

(7.42) 
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and for f and g, 

af = 2x .A ax 

z la 

df = 2x-A 3x 

dT a7 

(7.43) 

This completes the evaluatkon of the necessary derivatives. 
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7.4.5 Gas Dynamtcs of the Inflatable Restraint System (Air bag) 

The gas dynamtcs model for the airbag IS considered In separate 

parts. One part conststs of the gas supply model and the other part consists 

of the gas dynamtcs of the tnflating or deflating bag. 

Gas Supply Model 

The basic assumptions are: 

(1) Perfect gas 

(2) One-dtmensional, quasi-steady, tsentropic flow 

(3) The flow through the nozzle 1s choked for the time duratton 

of tnterest 

(4) The mean velocity of the gas tn the supply 1s small 

The mass flow per untt area Ln a choked nozzle 1s gtven by’: 

r a+1 
fiJ= 

i 
2 f PP(&y’ 

I 

‘h 

(7.44) 

where u IS the flow In (Ibs/sec 1x1~) 

g ts the acceleratton of gravity (m/sec2) 

p is the pressure (lb/m2) 

pis the denstty (lb/m3) 

8 1s the ratio of specific heats (-1.4) 

The change tn density of the constant volume supply cylinder ts 

kP - r - 
WCDA 

dt 
(7.45) 

V* 
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where 

vo LS the volume of the supply (m3) 

A LS the area of the throat (ln2) 

5 is the discharge coefficient of the nozzle (throat) 

For adLabatlc flow the followmg relation 1s valtd 

(7.46) 

where P, and PO are a reference pressure and density. 

The tdeal gas law LB 

P = /RT = n?ET 
/ 

V, 
(7.47) 

where T 1s the temperature (‘Ranklne) 

R 1s the gas constant (In Per ‘Rankine) 

M 1s the mass (lb) 

ComblnLng equations (7.44) thru (7.47) and IntegratLng yields, 

(7.48) 

where 

PO = IS the inltlal density 

Q = 1+c(t-to) 

C = 
y ( 9) &gp- 

t = 1s the time (set) 

(7.49) 
(7 50) 

. 

and where the subscript o refers to the mltlal values of the respective 

variables. 

We also have 

P = PO/ 

T z To/ 

Qf 

Q2 

-b/a-1 

(7. 51) 
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Inltlally, the mass of air In the cylinder (m,) 1s 

?I = v*p, 

hence the mass of air discharged Lnto the bag Mm IS given by 

(7. 52) 

Gas Dynamics of the Atrbag 

During Inflation, the volume of the bag, Vb, IS estimated by 

where 
V = \de 

mv 
P, = 

r% 
atmospheric pressure 

(7. 53) 

(7. 54) 

When the calculated value of Vb ts equal to the geometric volume 

of the fully Lnflated bag the gauge pressure In the bag, f#, IS computed by 

% = pa (P6/PJ- L 
(7. 55) 

where & LS the density of the gas In the bag when Lt was first fully 

inflated (i. e. when Its calculated volume equalled the geometric volume at 

atmosphertc pressure) 

pb = w% 

mb = 
mass of air tn bag 

Vb = volume of bag 

The volume Vb of the bag LS the geometric volume minus the 

decrease tn volume due to the contacting surfaces. The mass of gas In the 
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bag IS the mass of the gas discharged Into the bag less the mass of gas ex- 

hausted through the bag exhaust orifices 

where M,, LS given by equation (7.52) and MbUr LS the mass of gas exhausted. 

The quantity of gas exhausted 1s estimated from the relation 

if pb 1s less than a specified vent pressure 

d%d = 
df 

(CHAP Jxb5j if pb exceeds vent pressure 
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7.5 FORCE DEFLECTION MODEL 

In th[s model surface contact forces are replaced by a stngle 

force which 1s applied at a speclftc point and In a spectflc dIrectton as deter- 

mtned by the various contact routines. The magnitude of the normal force 

LS computed as a function of a single parameter which for the elllpsold-plane 

and elllpsold-ellipsoid contact routines 1s a measure of the maximum pene- 

tration. In addltlon a friction force 1s computed whLch 1s proportioned to the 

normal force and IS in such a direction as to oppose the tangential velocity. 

The model does not allow for the addition of VISCOUS or tnertlal forces except 

as provided by the “lnertlal” spike described In the following or the Impulse 

descrtbed in section 7. 7. 

In the force deflectIon calculation, hysteresis effects are 

approximated by speciftcatlon of an energy absorption factor R whtch may be 

a function of the force deflection parameter 6 . Permanent offset may be 

specified as a deflection factor G which may be a function of the parameter 

6. A unique force deflectIon characterlstlc 1s asslgned to each contract 

hence one should specify the force deflection characteristic as representative 

of the mutual properties of the contact involved. In specifying a mutual force 

deflection it 1s important to remember that the parameter 6 as computed In 

the program 1s a geometric property of the contact surfaces which 1s computed 

as if the surfaces were not deformed during the impact. 

Five functions are associated with each contact. These are: 

1. Base Force Deflection 

2. Inertial spike 

3. Energy Absorption factor (R) 

4. Deflection factor (G) 

5. Friction Coefficient 
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In the current model these functions are assumed to be funct ons 

of the penetration factor (force deflection parameter.) No provision ts 

made for variation with velocity. 

Each of these functions may be subdivtded, tf desired, into 

two separate parts fi (6) and f,(J) where, 

and 

fi 16) is defined for 0 5 6, f Jd, 

f’ (8) is deftned for & L- 6 5 & 

If d ts greater than the last defined value the function IS 

assumed to be a constant equal to the last defmed value. Each of these 

functions may be any of three functional forms; a constant, tabular data, 

or a fifth degree polynomial in 6 . 

The force deflection is constructed tn the following manner 

using the first four functions 

BASE + INERTIAL SPIKE (IF IT EXISTS) 

BASE 

FORCE 

&AD 6 REF. 

Figure 7.13 FORCE DEFLECTION CURVE 
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Initial loadtng occurs along the base curve plus the inertial 

spike(need not be used.) As long as continuous loading occurs the charac- 

teristic obtained will be the base plus the tnertial spike. Unloading will 

proceed down an unloading curve. If unloading occurs after a specifted 

deflection is achieved, the inertial spike ts deleted from further calculations 

of the force. 

Since the program uses a variable step integrator which may 

reject a particular step and repeat the calculations for a smaller step size 

it is not possible to detect whether loading or unloading is occuring by com- 

paring the present d with the previous 6 . To circumvent thts problem, a 

complete force deflection characteristic IS defined at the beginning of each 

new integrating step and is retained until a successful integration step has 

been achieved. 

The subroutine then redefines a new force-deflection function 

depending on current value of 6 as follows: 

1. d-5 0, or if 6 = & , return to calling program. 

2. If JO CUB/C ) unloading ts occurring, define reloading cubic: 

(a) If inertial spike exists and if 8&> s~,,~~ , 

remove inertial spike from further consideration 

(4 Define new cubic /‘c fJj= G *q/6-6,,,,,)+ G fd-6,,,)‘t C,(d-6,,,,,) 
for 4hc 6 &LjfF that satisfies the following conditions: 



bY 

and C, and C, by solving simultaneously 

c, A ;Lf-c3 AS= <“lt /J&)-co-cI A 

2 C, A + 3 Cj A’= fiHsd (L&J - c, 
(7. 58) 

lies between SC,,,, 

! cubic defmitlon 

(d) If local mlnlmum of new cubic definltton 

and JR.U and 1s negative, then replace 

a straight line between the points [ c$,,, 

and [ &/ ’ FB, f- dw) I by 

co = 6 (d,,,,cl 

(7.59) 

and return to calling program. 

3. If &/a/c5 6 ‘& * reloading 1s occurrlng; define new quadratic un- 

loadtng curve from cubic curve 

let Yz=/', 6%Y) 
d 6 

and A -&(di&J ‘f< (-$/dS-Jy&-fd REA - 

2 CJU~P 2 d 
and go to step number 5. 

co CO 

(7.60) 

(Note: 6c 
0 

was the value of JCUB,C when $ fsj was deftned. ) 
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4. Otherwise, S,,, 4 6 ; defme new quadratic unloadmg curve from base 

curve. 

(a) If 6& , remove lnertlal spoke from further constderatlon. 

(b) Determine R factor and place tnto I?,,,, . 

If R = 1, use base curve for unloadmg by settmg 

6 QUBD = s,,,,, -4.0 = p,- q, =Q,=O 

and return to calling program. 

(cl Determme G factor and place tnto GLAIr . 

Fetch Do from tnput data for base function and compute 

6 QU.422 = 4 + =mr fJ-4 1 

Y.2 = L.v 60 

YL 
(7.61) 

if the inertial spike exists. 

(7. 62) 

5. Usmg values of YZ and AREA defined m either step 3 or 4 determme 

new quadratic unloading function 

(7.63) 

for JQU”D f. 6 f Jc,,,, that satisfies the following condLtlons where 

(7. 64) 
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and 

by setting 

(7. 65) 

If @ co) f, 1s set to 0 to guarantee non-negative dertvatlve at 6=douAo 

and 

%=a f, [ 
9% 

cud/c QUA0 d CUB/C -4&/m - p; 1 (7.66) 

If q/@ y2= 5/z 
to guarantee non-negattve derlvatlve 

at ~=s,,,c 6 CUB/C - 4um 

7.6 IMPULSE FORCES 

For the first contact It IS necessary to account for the 

sudden momentum change caused by tmpulslve type forces. For perfectly 

elastic impact an energy approach would be sufflctent. For Lmpacts whtch 

are not perfectly elastic a coefflclent of restltutlon 1s generally used to 

define the force magnttude. In the literature most of the cases for whtch a 

coefflclent of restttutlon 1s defmed are for simple one or two dtmenslonal 

problems. A more general treatment 1s given in Reference 16, but general 

three dlmenslonal results are sparse for the type of materials of interest 11 

the occupant crash environment. For thts reason, the Impulse capabilIty 

has been Lncorporated In the program In the following manner. 

The program has the capability of makmg a step change in 

the lmear velocity, &, and the angular velocity, w , as a result of an lrn- 

puls Lve force. 
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The model computes accelerations from forces, and from a 

computational point of view must dlsttngutsh between two types of impulses. 

The first type 1s one In whLch the dlrectlon of the Lmpulslve force IS specs- 

fted and tts magnitude 1s unknown, such as the force at the first instant of 

contact of a body segment with a vehtcle surface or wtth another body seg- 

ment. 

The second type 1s one Ln whtch neither the dlrectlon nor the 

magnitude of the force 1s known, but a desired change In velocity 1s spectfled, 

such as the case where a Jomt 1s changed from an unlocked to a locked state. 

At the tnstant of locking, an impulsive torque must be applied which 1s suffi- 

clent to reduce the relative angular velocity of the segments adlom’ng the 

Joint to zero. 

For purposes of this dlscussLon, the system equations may be 

represented m the form 

(7.67) 

where ~1s the generalized applied forces and torques 

S ts the system matrix 

X 1s the resultant acceleration (linear and angular. ) 

Integratmg from time t to t t& yields 

Taking the limit as c goes to zero yields 

(7. 68) 

Where AA IS the impulsive change In veloctty and 

dy 1s the impulse (impulsive force. ) 
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In the program the matrtx S IS not eupltcltly evaluated. It 
--^__^- -n-n,, +na fnrrps 2nd then solves a set of 

TYPE II 

A resultant velocity change is specified, the impulse 1s un- 

known. For example, consider the case where an unlocked Joint 1s locked, say 

the Joint connecting segments i and 3. Determine the impulse torque vector, 

t, applied at the joint which will determine Ad, and A ti, such that the 

resulting velocities are equal i.e., 

The system equation is 

n>i=s’t = s&4 

(7.70) 

(7.71) 

(7.72) 

and S 1s a 6*(number of segments) by 3 matrix then 

azJJ =si’d;( 

Where “;’ are the three rows of S -1 
that correspond to then2 

-1 
representlng n NL and S8 are the three rows of S 

-1 
J 

that correspond to the 

Ai representing A w, I 

&=r 
(7.73) 

Thus 



The model computes accelerations from forces, and from a 

computational point of view must distinguish between two types of impulses. 

The first type ts one In which the direction of the lmpulstve force LB specs- 

fied and Its magnitude IS unknown, such as the force at the ftrst instant of 

contact of a body segment with a vehtcle surface or wtth another body seg- 

ment. 

The second type LS one tn which neither the directIon nor the 

magnitude of the force IS known, but a desired change tn velocity 1s spectfted, 

such as the case where a Jomt 1s changed from an unlocked to a locked state. 

At the instant of locking, an lmpulslve torque must be applted whtch 1s suffl- 

clent to reduce the relative angular velocity of the segments adjotnlng the 

Joint to zero. 

For purposes of this dtscusslon, the system equattons may be 

represented in the form 

;ir; SJy 

(7. 67) 

where L(IS the generalized applied forces and torques 

S 1s the system matrix 
. . 
)C 1s the resultant acceleration (linear and angular. ) 

Integrating from time t to t t & yields 

Taking the limit as c goes to zero yields 

Ajc=s”a, 

(7.68) 

(7. 69) 

Where Ak LS the impulsive change In velocity and 

Sk 1s the Impulse (impulsive force. ) 
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In the program the matrix S LS not explLcltly evaluated. It 

1s lrnpllclt since the program computes forces and then solves a set of 

simultaneous equations using a sequence of matrix block type operation to 

obtain the acceleration. 

Impulses ~~11 only be applied at the completion of a successful 

lntegratlon step before proceeding to the next step. Also, the Integrator LS 

reset and the step size 1s reduced to Lts starting Lalue. 

Consider the two types 

TYPE I 

The direction of the tmpulse IS known, its magnitude 1s not 

known. If more than one Lmpulse occurs simultaneously lt ~111 

be assumed that they are decoupled so that they can be handled 

sequentially by the technique developed for one. In this case 

the program steps are as follows* 

1. Detect and tdentlfy the Impulse to be considered. 

2. Call the appropriate contact routine to apply an impulsive 

force of the proper dlrectlon as under a normal call. Thts 

1s the only force applied (all other forces and gravity a-e 

set to zero.) 

3. Solve the system equations. 

4. Interpreting the computed acceleration as step changes 

ln velocity per unit of force, determine the magnitude of 

the force using the coefftclent of restltutlon. The normal 

component of relative velocity after the impulse at the 

point of contact will be the negative of the coefflclent of 

restltutton times the normal component of the relative 

velocity before the impulse. 



5. Scale the A>i to the value determined in step 4 and add 

them to the 2 in the program. 

6. Repeat steps 2-5 for all impulses to be considered at 

this time. 

7. Make normal call to DAUX and reset integrator. 

8. Proceed with normal program. 

It should be noted that the impulsive force is applied in a di- 

rection that has a component normal to the surface and a component tangent to the 

surface. The tangential component is determined from the prescribed coefficient 

of friction and is opposed to the direction of the relative tangential velocity. 

Application of this type of impulse may or may not cause the direction of the 

tangential velocity to reverse. The exact treatment of an impulsive contact 

in three dimensions considering both linear and angular momentum is quite com- 

plex and has not been solved (Reference 16.) It should be noted that a reversal 

of relative tangential velocity is not unusual as the tennis or billiard player 

is well aware. 

The coefficient of restitution,as interpreted by the program is 

the ratio of the negative of the resultant normal relative velocity after the 

impulse to the normal relative velocity before the impulse. Thus a coefficient 

of restitution of one (1) will reverse the normal component of the relative velo- 

city while a value of zero (0) will result in a zero relative velocity after im- 

pact, and a coefficient of restitution equal minus one (-1) will produce no change 

In the relative velocity. No restriction is placed on the value of the coefficient 

of restitution by the program (i.e. a value of +2 or -8 will be accepted.) In 

normal usage, it is assumed that the value will be between + 1. - 
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TYPE II 

A resultant velocity change is speclfled, the impulse is un- 

hnown . For example, consider the case where an unlocked Joint 1s locked, say 

the Joint connecting segments 1 and J. Determine the Impulse torque vector, 

t, applied at the Joint which will determine AU, and A u-l‘ such that the 

resulting velocities are equal i.e., 

(7.70) 

The system equation 1s 

where 

(7.71) 

t* 
t= t, 

fi 4 
and S 1s a 6*(number of segmentslby 3 matrix then 

(7.72) 

Where “;’ are the three rows of S 
-1 that correspond to then2 

and Syl are the three rows of S 
-1 

representlng n y 
J 

that correspond to the 

Ai representing A LJJ # 

&=t 

Thus 

Solving for du, 

d4 - (3; - s,‘, ‘:w, - y, ) 

(7.73) 

(7.74) 

(7.75) 
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It is assumed that S 

the problem cannot be solved. 

has an inverse. If It is singular, 

The remaining d% may now be evaluated from equation (7.71). 

The matrix S may be determined by repeated calls to the routine which solves the 

system equations, each call produces a solution vector which is a column of S -1 . 

In the first call, put a unit x component of torque on segment i and a negative 

unit x component of torque on segment j . The second call uses a y component and 

the third a z component. 

In general, in order to consider the simultaneous application of 

impulses to one or more Joints, d’ cc is a vector of length 3*k, where k is the num- 

ber of Joints to be considered as impulsive. S has dimension 6* NSEG by 3*k and 

must be determined. There are k sets of equation (7.74). Equation (7.75) rep- 

resents the solution of a 3*k by 3*k system of equations. 

This development may be modified for the case where its Joint is 

not completely locked in this case equation (7.70) is replaced with the equation 

p ( W‘ tbw,) = p h,+AWJ) 

where p is the appropriate projection operator: 

if the Joint is fully locked p = I, the identity 

if the Joint is locked on axis h p = hh* 

if the Joint is free on axis h P= I-hh. 

Equations (7.71) through (7.75) are modified accordingly. 
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APPEND= A 

1 +Tb .t,Iil-BODY EQUATIONS OF MOTION 

A-l Basic Equations of General Rigid Body Motions 

The dynamics of a system of rigid bodies depends upon the forces of 

interaction of the bodies and upon the single-body equationa of motion. These 

basic rigid-body equations are summarized and derived in this section. 

From Chaslee’ theorem (Reference 11,page 1241, the general motion of 

a rigid body can be expressed as a translation plue a rotation. It follows that 

the complete differential equations of motion of the body are composed of a 

translational equation and a rotational equation. The moat general forms of 

these equations are obtained when the rotational equations are expressed In 

terms of the rigid-body rotational inertia tensor about an arbitrary point of the 

body space. These most general forms are not necessary since the tensor of 

rotational mertia about an arbitrary point is simply related to the tensor of 

rotational inertia about the center of mass (c. m. ) of the body Accordingly, this 

dircussion 18 limited to the simplest forme of the equations of motion. These 

equations are 

where 

+ 
x = 
m= 

$= 

m?= S 

+ 
H = 3 

(A. 1) 

(A. 2) 

the center of mase (c. me ) of the body 

the total mase of the body 

the angular momentum (moment of linear momentum) of 

the body about its c. m. 

the sum of all external forces applied to the body 

the sum of the moments about the body c.m. of all forces 

applied to the body plus the sum of all force couples 

(torques ) applied to the body. 
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The angular momentum about the c. m. la given by 

(A. 31 

where 

4 = the tensor of rotatronal Inertia of the body about its c. m. 

w = the angular velocity of the body about Its c. m. 

Since the tensor of inertia is symmetric, it la diagonal when expressed 

in a special coordinate system, the principal-axis system of the body. In this 

system, the diagonal element $LL of $ is equal to the moment of inertia of the 

body about its L th principal axis. Thus, the component, HL , OfF? in the 

direction of the ith principal axis 1s given by 

where 

and a‘denotes the component of w In the direction of the L th principal axle. 

The component, of? in the direction of prlnclpal axls 1 of the body 1s 

given bv 

(A.41 

Gl 2 and ( 3 )3 can be obtalned by cyclic permutations I + 2, 2 + 3, 3 + 1 of the 

subscripts in (A4) 

The equations of motron rn(A.I) and&.2)are derived in the next subsection. 
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Derivation 

. 

I 

Figure A.1 VECTORS DEFINING A POINT IN A RIGID BODY 

Figure A-1. depicts the geometry of the position vectors employed m the 

developments. The point 0 1s the origin of the space-fixed (Inertial) refer- 

ence frame. Point C is a fixed point in the body which, for the present, 1s 

arbitrary but which is later identified with the body c. m. Point p is any other 

fixed points in the body. The position vector 2, which is directed from the point 

C to the point p, is rigidly fixed in the body. 

From Newton’s second law of motion, the equation of motion for the 

point p may be expressed 

Inb $,s denotes the positlon vector of the point p relative to the origin of the 

space-fixed coordinate system and F’ is as defined above. Since ;! uniquely 
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defines the point p (when the point C has been defined), functions which depend 
a* on the posltlon of p may be expressed as functions of r. 

The functron g(f) is the volume densrty at the point p of external forces 

applied to the body. F(g) may Include discrete forces by the employment of the 

formalism of Dlrac delta functions. The function ?(g, :‘)dV’ denotes the volume 

density of the force exerted at the point p due to the direct actlon of particles in 
1 1 -?l a differential volume element dV about a point p wrth nosltion vector r relativ 

to the point C. In contrast to 3(r’), Z(’ *’ r, r ) represents the effects of internal 

forces in the body. From Newton’s third law of motion 

(A.61 

The Integral in &&jis taken over the entlre body, and dV1 LS to be expressed 
4 in terms of the components of r In a body-fixed reference frame. 

From Figure A. 1 

A= x’+: (A. 7) 

The time derivative of(A.7)relatrve to the space-fixed reference frame IS 

It will be shown that 

where W denotes the angular velocity of the body. 

(A. 8) 

(A. 9) 

* In the present context, a function of 3, such as p(z) is actually a 
only of the components of 3 in a body-fixed coordinate system. 
and F(g) and(~) are also functions of time. 
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Let g, , (L =I, 2, 3) denote orthogonal unit vectors rigidly fixed in the 

body and 2; , (L =l. 2, 3) denote orthogonal unit vectors In the space-fIxed 

reference frame. Then 

(A. 10) 

where 

Since the matrix D with elements Di j is orthogonal 

&I = I 
(A. 11) 

r 
where D denotes the tranepoee of D and I denotes the IdentIty matrix. From 

(A:/> the inverse of (A id is 

and so 
(A. 12) 

i=l 

3 where r and ri denote components of 3 in the space-fixed and body-fixed 

systems, respectively. 

Equation(R,/t)may be reexpressed 

(A. 13) 

where r0 and r 
b denote column vectors with components r?and ri respectively. 

J 

Since ? is rigidly fixed in the body the column vector r b 
is time independent. 

Thus, the time derivative of (A. 13) is 
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or employing the inverse of C8 13) 

-0 r = &*O 

Differentiating (8 /I), one obtains 

or 

6-D + ($Djr = 0 

So bTD is a skew symmetrix matrix. Accordingly, there exists a psuedo 

vector 3 such that * 

ilk = (WaDI 1 

where y denotes the identity tensor (or tensor idemfactor ) and (W Qp I ) 

denotes the matrix of the tensor s@ 7 . Substituting ti#?into (416)leads 

’ 0 r = (tiQb1 jr. 

(A. 1~ ) 

(A.15) 

to 

(A.16) 

Srnce the time derivative of $1 is zero, the ve ctor equivalent of616) is 

4 
r = 

(A.17) 

or 

which agrees withA 9 

* It 1s clear from{&+) that in(AJOandtiJgthe elements of (WO I ) must be 
exoressed in the space-fixed coordinate system. By contrast, in the relation 
0 6 = (W @ I ) the elements of (13@ I) must be expressed ‘n the bod -fixed 
coordinate system. In the vector relations(&g)and(a 17), 3, ?, and k may oe 
expressed in any coordinate system. 
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The translational equation of motion is obtained by integratingo.S)with 

respect to ‘: over the entire body: 

f 
f’(?)i? dV = dV1 dV + z 

(A. 18) 

where 

+ 
F = 

(A 19) 

evidently, i?- 1s equal to the net external force applied to the body. In(4./6), 

dV is a volume element about the terminal point of 3. It 1s to be expressed in 

t rms of the components of? in the body-fixed coordinate system. From (A.6), 

it is concluded that 

= 0 

(A. 20) 

Smce p(g) is a function only of the components of ? m the body-fixed 

reference frame, it is to be treated as time Independent in the mtegrand in 

the left member of&/8,. It follows that 

/ 
j’(:)!?dV = 4 /p(t,ffaV 

dt 

It is convenient to identify the point C with the c.m. of the body. Then 

(see Figure A. 1) 

where m 1s the total maas, given by 

(A. 21) 

(A. 22) 

m= 
/ 

f’Cl+)d V 
(A. 23) 
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Employing@./9 -,4i?tt),&/.ls) reduces to 

mX *= 3 

which agrees withC(.I). 

The rotational equation is obtained from the volume integral of the 

first moment of(A5)about the point C (that is, about the c. m. ): 

Jj$)f&!dV = /It&,:l)dV1dV + d 

where 

(A. 24) 

N’ = 
l 

$6) f(:)dV 

\ 
Interchanging the dummy variables i? and ?’ in the double integral in 

(A.E-+)lt 1s concluded that 

JY 
t d ?(i!,t’) dVdV’ = f($ ;‘) dVdV’ 

It follows from this relation and(A.6)that 

= 1 [t 0 f(?, f’, + ‘I’ QD f(r +l, t) dVdV1 
z 

[* -?‘) O?(:, ?) dVdV’ 

Now, it 1s assumed that the internal forces in the body are central forces. 

Therefore f(?, f’) IS p arallel to a vector directed from the point p1 to the point 

p, that 18, parallel to (2 -?‘). From the foregoing relation 

;I @I?( ?, @) dVdV’ = 0 
(A. ;!S) 

A-8 



Since the vector # 1s directed from the body c. m. to the point p, the 

total angular momentum (moment of linear momentum), 2, about the c. m. is 

given by 

i: = 

/ 

pd);,&dV 

Equation (A.26Imay be reexpressed 

T: = p(r,z,, r3 1 [ rlSl +r2e2 + r3g31 

(A. 26) 

(A. 27) 

where ri and $ are as defined above. Since (A.9)1s valid for arbitrary body- 

fixed vectors It follows that 

r; 
eL 

Employing this relation, one obtains for the time derivative of (A-27) 

(A. 28) 

From&B)and(A-9) 

The vanishing of this term is a consequence of the relations 

f 
p(:):dV = 0 

(A. 29) 

which follows fromM.t2),(A 23) and&$. Employing(,+r$(A 2 7) and (A. 24) , (A. 28) 

reduces to 

$3 
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which agrees with&Z). 

Substituting@.81 into(&&and employing&g) rerulta in 

;i: = 
/ 

#);‘@2dV + /p($)&B (3x t)dV 

which reduces, by virtue of(A.ts) and the triple croaa product expansion, to 

where 

2 = 9 42 
(A. JO) 

(A. 31) 

Equation G4.31) is the fundamental defining relation for the tensor of rotational 

inertia about the c.m. It is apparent that 9 is symmetric. 
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COMPARISON OF LAGRANGIAN AND NEWTONIAN TECHNIQUES FOR DERIVING 
EOUATIONS OF MOTION 

This section is included for completeness so that one skilled in the 

classical treatment of rigid body dynamics may fully understand the techniques 

used in the Calspan model and realize that the resultant equations of motion 

are equivalent. Understanding of this section is not essential for use of the 

program.* 

A.2.1 Methods 

The classical treatments of holonomic constraints in rigid-body dy- 

namics include the Newtonian method, the Lagrange method, and what may be termed 

the independent-coordinate method. The treatment employed in the Calspan 3D 

Crash-Simulation Model differs from each of the classical methods, It is similar 

to the Newtonian method in that constraint forces are explicitly contalned in the 

equations of motion without the employment of Lagrange multipliers. However, in 

contrast to the classical Newtonian method (in which explrcit expressions invol- 

ving the constraint forces are obtained by force-diagram analysis), the Calspan 

Model employs constraint relations of the type employed in the Lagrange method. 

In lieu of the employment of Lagrange multipliers, these constraint relations 

are supplemented by additional relations, called compatibility relations, which 

are inforced from Newton's third law and/or analysis of constraint-force geometry. 

Since the method employed in the Calspan Model does not appear to be 

documented in the published literature, the ObJeCtlVe of this section is to show 

that this method is equivalent to the Lagrange method. The first step toward 

this ObJectlve is the proof, in the next subsection, that Lagrange-type constraint 

* The classical methods do not apply to the sliding constraint as Indicated in 
Reference 11, page 15. 
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terms can be included in the Euler equations of motion. This proof is desirable 
since the equations of motion employed in the Calspan Model are of the Euler 

type. 

In the subsection titled Equivalence Relations, the equivalence of 

the Calspan method to the Lagrange method is formally demonstrated, and it is 

shown that the compatibility relations which are employed in the Calspan formal. 

ism can be inferred from the relations connecting the Lagrange multipliers and 

the constraint forces and torques. Finally, in the subsection titled Exampl s, 

the equivalence of the Calspan method to the Lagrange method is demonstrated fol. 

a few simple Joints. 

A.2.2 Equations of Motion 

The basis for the proof of equivalence given in the next subsection is 

the vector form of the Euler equations of motion containing Lagrange-multipli r- 

type constraint terms. These equations are first stated and then derived. 

For L rigid bodies and M vector constraint relations, the equations 

of motion are: 

(A. 32) 

(A. 33) 

(A. 34) 

(A. 35) 
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where 
(A. 36) 

2” -2” 
B (A. 37) 

definitions follow: 

mass of lth body 

moment of inertia of lth body about its ith principal axis 

net external force acting on lth body 

net external torque acting on lth body, about C.D. of lth body 

constraint force actrng on lth body due to mth constrarnt 

constraint torque acting on lth body due to mth constraint 

angular momentum of lth body about its c.m. 

position vector of c.m. of lth body relative to origin of laboratory 
coordinate system 

angular velocity of lth body about its c.m. 

-I 
tensor coefficient of cfJ in mth constraint relation 

tensor coefflcrent of x’f in mth constraint relation 

coordinate-derivative-independent additive vector in mth constraint 
relation 

unit vector in direction of jth principal axis of lth body 

unit vector in direction of Jth axis of laboratory coordinate system 

alternating symbol equal to: 

0 of any two of the lndrces i,j ,k are equal 

1 If iJk is an even permutatlon of 123 

-1 if i]k IS an odd permutation of 123 
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&‘ component of angular velocity of lth body about its c.m., in direction 
of lth principal axis of body 

%7 vector Lagrange multiplier for mth constraint 

A rnk 
; .$ f Lagrange multiplier corresponding to kth component 

equ:tion of mth vector constraint relation 

J th component of P in laboratory coordinate system 

a” 
A0 

“KJ 
e& Ai 2,' coefficient of WJQ in kth component equation of mth 
vector constraint relation 

d 
60 

mk eK -Fm additive constant in kth component equation of mth vector 
constraint relation 

. 2’ coefficient of ;J” 
vector conitralnt relation 

in kth component equation of mth 

The equations of motion have been displayed in the vector form becaus 

the constraint relations employed in the Calspan Model are inferred in vector form, 

and are more compact in the vector notation. Even more important, the vector 

forms allow flexiblllty in choosing optimal component representations. Component 

equations corresponding to the vector equations are derived in the following dls- 

cussion. 

Lagrange-multipller-type constraint terms arise most naturally from 

the lncluslon of constraint relations in Hamilton’s Principle. However, the 

Euler equations of motion cannot be obtarned directly by the application of Ham- 

llton’s Prlnclple to a Lagranglan which is identified with the kinetic energy of 

the system. 

One way In which this difficulty can be circumvented is to obtain the 

Euler equations including Lagrange-type constraint terms by direct transformation 

of the Lagrange equations of motion in terms of the Euler angles. This approach 

1s employed here. 
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where 
(A. 36) 

f’.$’ 

B (A. 37) 

definitions follow: 

mass of lth body 

moment of inertia of lth body about its rth principal axls 

net external force acting on lth body 

net external torque acting on lth body, about c.m. of lth body 

constraint force acting on lth body due to mth constraint 

constraint torque acting on lth body due to mth constraint 

angular momentum of lth body about its c.m. 

position vector of c.m. of lth body relative to origin of laboratory 
coordinate system 

angular velocity of lth body about its c.m. 

--P 
tensor coefficient of W in mth constraint relation 

tensor coefficient of 2’ in mth constraint relation 

coordinate-derivative-independent additive vector In mth constraint 
relation 

unit vector in direction of jth principal axis of lth body 

unit vector in direction of Jth axis of laboratory coordinate system 

alternatrng symbol equal to: 

0 lf any two of the indices i, J ,k are equal 

1 If iJk is an even permutation of 123 

-1 If lJk 1s an odd permutation of 123 
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U‘ component of angular velocity of lth body about its c.m., in direction 
of ith princrpal axis of body 

x7 vector Lagrange multiplier for mth constraint 

x rnk 
2 . 6,” = Lagrange multiplier corresponding to kth component 

equztlon of mth vector constraint relation 

Jth component of 3 1x-t laboratory coordinate system 

Q" 
A0 

“KJ 
=, . Ai 2,' coefficient of L3 4 

J 
in kth component equation of mth 

vector constraint relation 

d 
A0 

mk eK ' 03, additive constant in kth component equation of mth vector 
constraint relation 

4 Z'coefficient of ;J" 
vector conitraint relation 

in kth component equation of mth 

The equations of motion have been displayed in the vector form because 

the constraint relations employed in the Calspan Model are inferred in vector form, 
and are more compact rn the vector notation. Even more important, the vector 

forms allow flexlblllty in choosing optimal component representations. Component 
equations corresponding to the vector equatrons are derived in the following dis- 

cussion. 

Lagrange-multiplier-type constraint terms arise most naturally from 
the inclusion of constraint relations in Hamilton's Principle. However, the 

Euler equations of matron cannot be obtained directly by the application of Ham- 
llton's Prlncrple to a Lagrangian which is identified with the kinetic energy of 
the system. 

One way in which this difficulty can be circumvented is to obtain the 

Euler equations including Lagrange-type constraint terms by direct transformation 
of the Lagrange equations of motion in terms of the Euler angles. This approach 

1s employed here. 
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The starting point of the development is Lagrange’s equations in- 

cluding generalized forces and holonomlc constraints. These are (Ref. 11, 

page 42) 

(A. 38) 

(A.39) 

where the s k are generalized coordinates, the QK are generalized forces, 

Equations(A.39)are the constraint relations, and the X, are Lagrange multi- 

pliers. In this formulation applied forces and constraints are included in 

the right side of (A.38) so the Lagrangian is given by 

up, T”‘? jbf’j,? ..-~N)=7(~,,..-,~~,Igl,...~*~ 
(A.40) 

where T denotes the total kinetic energy of the system expression ln terms of 

the generalized coordinates 
SJ 

and coordinate derivatives j, * 

The first step in the development is to particularize the relations 

in(a.38)and@.39)to L rigid bodies with MS holonomic constraints, and to the 

coordinates of interest. The coordinates for the lth body are the rectangular 
P coordinates, X. 

1' 
of the body c.m. in the laboratory frame, and the Euler angles 

84 $9 yt defined on page 107 of Reference 11. As indicated by Goldstein, 

these coordinates are suitable for the Lagrangian formalism. For the sake of 

compactness of notation it proves convenient to employ the symbols e, P defined by 
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The Lagrange equations for the system may be expressed, 

with (A.38) and (A. 39) as 

d dX 
dt JT - 

constraints are expressed in At44. 

denote the generalized forces. In I$.42 and A.43, F1 R -I and N. 

The kinetic energy of the system is given by: 

(A. 41) 

in accord 

(A. 42) 

(A. 43) 

(A.44) 

The holonoml c 

(A. 45) 

where the symbols +f , Mg and u 4 are defined in the context of equation 

A.37. From Reference 11, page 134: and the symbol definitions inA.41, 
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In order to obtain the Lagrangian of equations A.42 and A.43, it is only necessary 

to substitute for the w I 1 in A.45, employing A.46. It has been verified that this 

procedure yields the correct Lagrangian. The substitution is not necessary for the 

purposes of this development. 

Employing the translation terms of A.45 equations A.42 become 

M, ;;I,:' = zMs ;),,,b&+ &"- FfL 
??7=/ 

I'= / I s--3 ;-I=/,***,f (A.47) 

where GJ" and 5 are defined in the context of A-32* 

The next step in the development is the reexpression of A.43 in the 

Newtonian form with Lagrange-type constraint terms. From page 52 of Ref. 11, 

the generalized force Q, corresponding to an angle variable q 
3 

such that dq. 

corresponds to an infinitesimal rotation about an axis with direction n* 
3 

is given 

by 

(A.48) 

where G denotes the applied torque about the origin point from which q is measured. 
3 

From page 107 of Ref. 11, d# is an infinitesimal rotation about a space-fixed 

axis z, de is an infinitesimal rotation about the line of nodes, and dv is an 

infinitesimal rotation about the body axis z'. So letting (in accord with the sym- 

bolism of A.41) 

;;t e, unit vector in direction of line of nodes for lth body 

e, Xp unit vector in direction of space-fixed axis z for lth body 

'e 
unit vector in direction of body axls z' for lth body 
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it follows from A.48 that, in A.43 

(A.49) 
where CJ is defined in the context of ~-33 

As indicated on page 52 of Ref. 11, for an angle variable qj of th type 

under consideration, 

dT -;-x3 
dft 

.r 

(A.50) 

where T denotes the kinetic energy and z denotes the body angular momentua 

about the origin point for measurement of q.. 
3 

Since in this development T ex- 

pressed in terms of the qj and q. 
3 

is the same as the Lagrangian, it is concluded 

that 

dd: =e. Xf 
d ep 

. P I 
(A. 51) 

-1 where H denotes the angular momentum of the lth body about its c.m. 

The forms of the left member and the last term on the right in A.43 

are independent of the constraint terms. It follows that, in the absence of 

constraints , 

or employing A.49 and A.51, 

(A. 52) 

(A. 53) 
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But, in the absence of constraints, 

and so, 

(A.54) 

The relations in A.53, A.54, and A.51 imply that 

(A.55) 
and 

(A.%) 

The relations A.51, A.55 and A.56 have been verified by direct evaluations In- 
volving the Euler angles and the relations in A.46. This verification 1s a 
useful check on the correctness of the development. 

Employing A.49 and A.56, A.43 may be reexpressed, 

k-f,...,3 ; L=l,..,L (A.57) 

The relations in A.57 and A.44 will be transformed to obtain 

(A.58) 
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(A. 59) 

where $,‘denotes a unit vector in the direction of the jth principal axis 

of the lth body. 

To simplify the symbolism during transformation the superscript 1 will 

be dropped and restored later in the development. Equations A.S7 and A.44 

become 
x d u’ 
CA’ r= 

where in A.61 the sum over 1 has been suppressea. 

The transformations of A.60 and A.61 depend upon the transformations 

( 1 8/ - Pi&) 

(5, - (24, 

(A.62) 

(A. 63) 

dropplng the superscript 1 in A.46 and employing A.41 one obtains the trans- 

formation 

(A. 64) 
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where 

The transform matrix C is nonorthogonal. The inverse of A.64 is 

(A.66) 
where 

cc-L I 
(A.67) 

and I denotes the identity matrix. The inverse C -1 is given by 

It will be observed that C -1 is singular when B is an integral multiple of v . 

This point is discussed below. 

To obtain the unit-vector transformation in (P.63), it is observed 

that the angular velocity, is , is given by the relation 

and by the relation, 
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The latter expression is valid srnce independent angular velocities 

add lrke vectors.* Stated alternately, infinitesimal rotations can be repre- 

sented by vectors, and independent Infinitesimal rotations so represented can 

be added like vectors whether or not the rotations occur about orthogonal ax s. 

Equatrng the two expressions for Z yields 

Substrtutrng from A64 and observing that the resulting relation must be valid 

for arbitrary values of 9 , one obtains 

where F denotes the transpose of C. Since 

(c^I;) i (Zj’ 

the inverse of A.69 is given by 

(A.69) 

(A. 70) 

Now, rt can be shown that the srngularity of C -1 at 6 -0 occurs 

because** 

(A. 71) 

This degeneracy might cause difficulty in numerical integration of A.60 in some 

Isolated cases.*** Such potential difficulty is not of concern m this develop- 

* Rigorously speaking, angular velocity is a psuedo vector. The distinction 
between pseudo vector and vector 1s not significant in this development. 

Since the singularity of C 
-1 ** at B=nX is similar to that at 8 =O we ne d 

consrder only the latter srngularrty point. 
*t* The degeneracy at 8 =0 must also be present in the corresponding Lagrange 

form of the Euler-angle-dependent equations from which A.60 was derived. 
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ment since the ObJectlve is the analytic derivation of the equations in A.58 

and A.59, which are not affected by the degeneracy in A.71. 

To treat the singularity of C -1 
at &I =O in the transformation in A.70 

it 1s only necessary to perform the transformation for Q=AG and then, in the 

result, pass to the limit as de-0 . It is clear from A.70 that the limit 

exists and is well behaved. Consider the treatment of the singularity when 

and C -1 are functions of time, t. Suppose@(t) = 0 at t--t. In this case, one 

can employ A.70 to evaluate ak at time t and then pass to the limit as tat, 

to obtain $k at time t, . If c-l is a function of t but 4 =O always, one 
can again evaluate 2, for B=ae and then pass to the limit as d&+0 . The 
singularity at B =O in the transformation in A.67 can be handled by the same 

technique. With this understanding, the groundwork is complete for the trans- 

formations of A.60 and A.61. 

Multiplying A.60 by C -1 
kJ 

and summing over k yields 

Putting 

c c 
and employing A.70, A.72 reduces to 

c -1 
3 

rA.72) 

(A.73) 

(A. 74) 

The inverse of A.73 is 

(A.75) 



Substituting (A.75) into (A.61) yields 

Rearranging and employing (~.64) leads to the desired result 

. 
J=l +? ‘t; + %d “d 

f d&O 

(A, 76) 

Restoring the superscript 1 In (4.74) and (A.76)) and the sum over 1 in (A.76) 

leads to the equations of motion in (A.58) and (A.59). 

It has been shown that under the transformation 

(A. 77) 

where C 1 k, is given by (A.46), the equations of motion in (A.57) and (A.44) 

imply the equations of motion in (A. 58) and (A.59). Since it has been shown 
-1 that, subJect to the proper treatment of the singularity of C , the inverse 

of the transformation in (A.77) exists, it is apparent that the equations of 
motion in (A.58) and (A.59) imply the equations of motion in (A-57) and (A.44), 

Thus the equations (A.58) and (A.59) are completely equivalent to the equations 

(A.577 and (A.44)) and accordingly, to the Lagrange equations in (A.44) and 

(A.43). It is readily verrfied that equations (A.47)) (A.58)) and (A.59) are 

identical, except for notation, to the component equations corresponding to the 

vector equations (A.32) - (A. 36) , 

The final step of the development is to express the left number of 

(~.58) in the Euler form. Put 

or ;;a= qj 1. 3” 

(A.78) 
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. 

DifferentratIng (A.78) with respect to t leads to 

now 

or 

(A.79) 

The cross product may be expressed 

where d 
k, c 

IS the alternating symbol defined above.* Thus 

(A. 80) 

Since I$:- $,‘= 6 
LJ 

(A.80) and (A. 79) lead to the relation 

which is identical to equation (A.37). The development of the relations 
(A.32)-(A.37) is complete. 

P 41 * The principal axis directions have been labelled so that $,’ 6 2, = e> 
This labelling is in accord with (A.46) 
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A.2.3 Equrvalence Relations 

As mentioned above, the purpose of this subsection is the formal demon- 

stratron of the equivalence of the Lagrange treatment of constraints to the treat- 

ment employed in the Calspan Crash-Simulation Model. No attempt is made here to 

Independently derive the equations employed In the Calspan Model. Rather, th se 
equations are inferred analytrcally from the Euler equations with Lagrange-type 

constraints, and then the equivalence of the two methods is proved. 

The proof of equivalence hinges on the relations 

(A. 82) 

(A. 83) 

whxh are the same as the relations (A.35), (A. 36)) (A.34) of the previous 

subsection. Following a dlscusslon of the characteristics of the vector Lagrang 

multlpllers, it 1s shown that the relations (A-82)-(A-84) imply the compatibility 

relations, which can be employed to convert the equations of motion from the 

Lagrange-multiplier form to the constraint-force from employed in the Calspan 

Model. 

The constraint relations (see (A.84)) are expressed in the vector i’orm 

since this 1s the form employed in the Calspan Model. However, the fonnalisu 

1s unrnedrately applicable to scalar constraint equations (such as the torque- 

type constrarnt relation for the universal Joint - see the subsection Examples.) 

To see how this 1s done, suppose the mth constraint relation is scalar. One 
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can then put 

and equations (A.82),(A.83), and (~.84) reduce to 

(A.85) 

When, for a particular value of m, the relations (A.85) are employed with 

(A.82), (A.83)) and (A. 84), the solutions for )in, and A,,,, are totally am- 

blguous. These ambiguities do not affect the solutions for ‘I f m , z and 

other physical quantities of interest. 

There are other cases In which certain ones of the Lagrange multi- 

pliers cannot be uniquely determined. A case in point is the vector Lagrange 

multiplier which corresponds to the torque-type constraint for the hinge Jornt 

(see the subsection: Examples). The lack of uniqueness of the vector Lagrange 

multrpllers corresponding to some vector constraint relations is probably due 

to the presence of redundant informatlon in these relataons. The removal of 

such redundancies, whrle unnecessary, would probably usually be desirable in 

appllcatlons based on the employment of Lagrange multlplrers.* By contrast, 

in the formulation employed in the Calspan Model, the removal of such redun- 

dancies rn the constraint relatrons is sometimes both unnecessary and undesirable. 

There 1s a twofold reason for this circumstance. First, rn the Calspan formu- 

latlon, the direct removal of redundancies in the constraint relatrons would 

* The removal of redundancies in the constraint relations is not absolutely 
essential because ambiguities in values of the Lagrange multipliers do not 
result in ambrgurties rn the solution for physical quantities of Interest. 
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sometimes result in added complexity in the formulation. Second, in this 

formulation, the constraint relations are supplemented by additional relations 

(the compatibility relations) which usually prevent the ambiguities in i,” 

and 54 which, in the Calspan formulation, would otherwise result from 
redundancies in the constraint relations.* Ambiguitres in the values of the 

Lagrange multipliers have no effect whatever on the solution since the Lagrange 

multipliers are not employed in the Calspan formulation. 

The foregoing discussion provides essential background information 

for the ensuing discussion on the relation between the Lagrange-multiplier 

dependent formulation and the formulation employed in the Calspan Model. In 

particular, in eliminating the Lagrange multlpliers from the equations of 

mot ion, it cannot be assumed that the transform relations in (A.82) and (A.83) 

can be inverted to obtain unambiguous expressions for the vector Lagrange multi- 

pliers in terms of the quantities z; ,?J, A; and EL . To determine how th3 

Lagrange multipliers can be eliminated from the formulation, it is necessary to 

achieve an understanding of their ultimate role in the equations of motion.** 

* Some types of redundancies (such as those resulting from the inadvertent 
employment of two distinct yet mathematically equivalent constraint re- 
lations) could not be offset by the compatibility relations. Such redun- 
dancies could result in ambiguities in the solutions for individual constraint- 
force and/or constraint-torque terms, but they could not affect the solutions 
for either the coordinate variables or the net constraint forces and torque:,. 

** The content of the preceding two paragraphs can be better understood in 
retrospect, after reviewing the entlre development of this section. 
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It will be recognized that the vector Lagrange multipliers, x,,, , 

have no physical significance;* and further, in the entire formulation, they 

only appear in the relations in (A.82) and (A.83). Therefore, from the physical 

and mathematical standpoint, the only value of the Lagrange multipliers lies in 

what their existence in the relations (A.82) and (A.83) implies about the rela- 

tionships between the quantities m , $2 , 8’ and &$ . fP Accordingly, it 1s 

clear that the relations in (A.82) and (A.83) can be replaced by any other re- p-- 
lations which are equivalent to (A.82) and (A.83) with regard to implications 

about the relationships between the quantities f$,q, L+ f m and 4 and which 

imply nothing whatever except these relationships. 

For reasons drscussed below, the relations between the quantities 
FP Fit @I> ma 84 and A,$ which are implied by (A.82) and (A.83) are called 

compatibility relations. As stated above, in the formulation employed in the 

Calspan Model, the Lagrange multipliers (and, therefore, the relations (A.82) 

and (~.83) are replaced by the compatibility relations. In this development, 

thenature of these relations will be inferred from the theory of equations. 

Two lemmas will be introduced, the first of which is: 

Lemma 1 

The equations 

(A. 87) 

* Those Instances in which one or more of the vector Lagrange multipliers are 

equal to constraint forces or torques are exceptions to this statement. 
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have at least one solution for the 3, if and only if ‘;i and f,, 

the compatibility relations. 

satisfy 

Where $iand ?A are detennlnable functions of AL and 8’, I’ (/Al, L,)I’=I 4 , 
I is equal to the rank of the matrix of the N component equations corresponding 

to (~.87), and 

/d= ~LPI (A.89) 

Except for the symbolism, this lemma is identical to a mathematical 

criterion which is proved in Reference 12, page 245. The compatibility relations 

in (A. 88) are, except for notation, identical, to the conditions of compatibiliQ - 
stated in the reference. They are called conditions of compatibility since, if 

they are not satrsfied, the system of equations in (A.88) has no solution or is 

incompatible. It is in keeping with the employment of the term compatibility in 

Reference 1, that the relations in (A.88) are termed compatibility relations. 

The coefficients cliand ?Ain the compatibility relations can be 

evaluated from the determinant equations given on page 245 of Ref- 

erence 11. However, in the examples given in the last subsection of this section, 

the compatibility relations are quickly obtained by analyses (or mathematical 

inferences) employing relations of the type in (A.87). As stated in the sub- 

section Methods, the compatibility relations can be inferred directly from 

applications of Newton’s third law and/or analyses of the constraint-force geo- 

metry. Prior to the analysis presented here they were always obtained by the 

latter means. 

Though vector notation is employed in expressing the coefficients 
-L 
GA,,, and .?,L in (A.88)) these coefficients are not always vectors. In some cazes 

they are (non-invariant) linear combinations of elements of tensors. In such cases, 
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certain ones of the compatibility relations in (A.88) can be combined to obtain 

invariant vector equations. In the examples in the last sub-section of this 

section, the compatibility relations are always expressed as invariant forms 

(that is, as invariant-scalar and vector equations.) 

The satisfaction of the compatibility relations by the quantities 

7j!? and sm’ cannot be verified unless the values of these quantities are known. 

But the values of these quantities cannot be obtained until the equations of mo- 

tion have been completely solved. For this reason, the compatibility relations 

must be regarded as constraints on the values of the quantities 7$’ and Z”V? . 

As implied above, the compatability relations cannot introduce more information 

than that which is inherent in the relations (~.87), which they replace. 

For the sake of tidiness and vigor of exposition, it is desirable, in 

the transition from the Lagrange-multiplier formulation to the formulation em- 

ployed in the Calspan model, to replace the relations in (~.87) by mathematically- 

equivalent relations. Since it cannot be claimed that the compatibility rela- 

tions In (A.88) are completely equivalent to the relations (A.87), a complete 

equivalence will be established through Lemma 2. 

If the relations in (A.87) are solvable, they are mathematically equiv- 

alent to the compatibility relations (A.88) taken in conJunction with parametric 

expressrons which express the general solutions of the relations (A.88) for the 

quantities . 

In proving Lemma 2, it will be convenient to introduce the expression 

to represent the parametric form of solution of (4.114) for the xm . In 

(\.90), ( A!’ ), ( 8,p’ ), ( +$’ ), ( 7:’ ) denote sets for ,?z/, L ,m’=l I* 
and ( 0: ) = an arbitrary - parameter set cl, , L= 1, 3m-j . The arbitrary 

value parameters, 9, , express the arbitrariness in the solutions rm of 
. 
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the relations in (A.87) . If the rank, I,,,of the matrix of the system (A.87)is 

equal to the total number of unknowns, 3M, (the M vectors, ?& have 3M compo- 

nents) there are no arbitrary parameters, & , and the vectors, & , are uniquely 

determined. If 3M 1 Iy,there are 3M-5,parameters dG . 

To prove Lemma 2 it must be shown that, if the relations (A.87) are 

solvable, then the relations (A.87) imply and are implied by the compatibility 

relations (A.88) in conjunction with the solutions in (A.90). 

The forward implication follows immedrately from the discussion on page 

245 of Reference 12.* The reverse implication follows, provided that subject to 

the satrsfactlon of the compatibllrty relations, the solution for the x’ , rep - 

resented in (A.90), satisfies the equations (A.87). The discussion on page 245 

of Reference 12 indicates not only steps which can be taken to obtain a general 

solution, but proves (again SUbJeCt to the satisfaction of the compatibility re- 

lations) that the general solution so obtained does indeed satisfy the system of 

equations in (A.87). Thus, Lemma 2 is valid. 

With a sample proviso, the condrtion of solvability of the relations 

In (A.87) can be removed from the statement of Lemma 2. This proviso is in that 

it be understood that incompatibility in the relations (~.87) is equivalent to 

the farlure of satisfaction of the compatibility relations. This proviso is, of 

course, just the statement of Lemma 1. With this proviso, it can be stated (with- 

out further qualification) that the relations in (A.87) are mathematlcally equtv- 

alent to the compatlbrlity relations, (A .88) taken in conjunction with the ex- 

presslons (A.90) for <, . 

* In Reference 12, arbitrarrness in the solution for the unknowns is brought out 
by showing that 3M-1,of the unknowns may have arbitrary values. Clearly, the 
assignment of arbitrary values to 3M-&unknowns is equivalent to the intro- 
duction of 3M-5,arbitrary parameters, as in the representation in (A.90) 
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The transition from the Lagrange-multiplier-dependent formulation to 

the formulation employed in the Calspan Model is now obvious. In the former 

formulation, the relations in (A.87) are employed. To obtain the latter formu- 

lation, the relations rn (A. 87) are replaced by the relations in (A.88) in con- 

Junction with the relations (4.87). It 1s clear that the compatibility rela- 

tions (A.90) represent the result of eliminating the Lagrange mulltpliers from 

the equations of motion. Thus, in the Calspan formulation, the solutions for 

the physical quantities of interest can be obtained from the equations (~.32), 

(A.33)) (A. 34)) and (A. 88)) and the expressions for xm in (P.90) are not needed. 

The exposition and proof of the mathematical equivalence of the Calspan formu- 

lation to the Lagrange multiplier-dependent formulation is now complete. 

Since the constraints which are imposed by a simple Joint involve 

only two rigid bodies, for each value of m in the constraint relations, 42 

and 8: vanish for all but two values of 1. For the purposes of the analyses 

of Joints given in the next subsectron, it is desirable to identify each con- 

straint relation in terms of the bodies involved. To this end, the subscript 

m in the quantities a? ifJ> A,p’ By can be interpreted, not as a simple sub- 

script but as a triplet subscript* 

797= ( 4,&79 (A. 91) 

In (A.91), k and 1 are labels of the interacting bodies and n denotes a particu- 

lar constraint resulting from this interaction. For example, 

(1,3,2) 

means the second constraint relation resulting from the interaction (through a 

joint) of body 1 with body 3. Clearly (k,l,n) and(l,k,n) refer to the same con- 

straint. 

If m=(k,l,n), r,‘, ;T,‘, Ai, BA all vanish unless k # 1 and J is equal 

to k or 1. Thus, in the triplet notation, (A.82)) (A.83)) and (~.84) may be 

re-expressed. 
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(A. 92) 

Since a single joint can only transmit one net constraint force and 

one net constraint torque to a given body, there is, for a given joint, a maxi- 

mum of two vector constraint relatrons. In the next subsection, the constraints 

are categorized as force-type and torque-type constraints. 

4.2.4 Examples 

In this subsection, the constraint relations corresponding to four 

simple joints are expressed. In each example, the compatibility relations are 

inferred, and the mathematical equivalence expressed in general in Lemma 1 and 

Lemma 2 is demonstrated. In the case of the hinge joint, it is shown that the 

compatibility relations offset the effect of the redundancy in the constraint 

relations. 

The analyses depend only on the relations in (A.92). Since for each 

constraint only two rigid bodies are involved, there 1s no loss of generality 

In labeling our body by the index 1, and the other body by the index 2. The 

relations in (A.92) can then be re-expressed. 

-iI -sz t 
/9*’ ’ 3’+ a’ . y = - A,“. J - ” - F 

w (A. 93) 
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(A.94) 

(A. 95) 

where the subscrlpt n can be ldentlfled with n in the definition of the triplet 

subscrlpt m In (A .91) , The addltlve vector, & , has been deleted from the re- 

latlon (A.93) since it 1s zero in the cases of interest. 

There are, at most, two constraints corresponding to each Joint. In 

the first type of constraint, which will be labeled n=l, the tensors Bi and 8,’ 

are nonvanishlng and they have inverses. Thus, the transforms in (A.94) can be 

Inverted and the constraint torques can be expressed as linear functions of the 

constraint forces. This type of constraint (n=l) will be termed a force-type 

constraint. 

In the second type of constraint (n=2) the constraint forces vanish. 

This type of constraint will be termed a torque-type constraint. 

Every Joint has exactly the same force-type constraint, and all Joints 

except the ball Joint have both force-type and torque-type constraints. For this 

reason, the ball Joint 1s dlscussed first. 

1,’ 4.1 ‘Ihe Ball Joint 

The basic geometry of the rigid bodies and the Joint is deplcted In 

Figure A. 2. 
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body 1 

Inertial Reference 

Origin 

Figure A.2 BASIC RIGID BODY GEOMETRY 

The vector 7 is the position vector of the Joint relative to the 

c.m. of body 1 and the vector c 1s the position vector of the same Joint rela- 

tive to the c .m. of body 2. From the figure 

Since the position of the Joint is rigidly fixed relative to both bodies, it is 

clear that 151, (~=/,a ), is constant, and the orientation of G (A= 1,~) is 

completely determined by the orientation of body! , (j-1,2). The orientation of 

p (~~12) can be determined from the relation. 

(A. 97) 

Where the unit vectors 4: and s,‘are defined in the content of equation (A.37 

and s ‘: denotes a direction-cosine matrix. From (A.97) 
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(A.98) 

Since 5 1s rlgld relative to body J , Its components, GcP F1 , ln the body-fixed 
coordinate system are time-Independent constants. Therefore, (A .98) may be em- 
ployed to determlne the components of 5 in the space-frxed coordinate system. 

The transform (A.98) can be re-expressed in compact vector notation by 

Introducing the vector 2;” grven by 

Clearly, the vector 5” is constant. From (A. 99) 

substltutlng Into ( A. 98) 

whence 

4 = I, 2 

Where s”’ denotes the transpose of the tensor S’given by 

From (A. 100) 

(A.99) 

(A. 100) 

. 
<= -+I w @G (A. 101) 
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which may be re-expressed 

where 
? 

W denotes the skew-symmetric tensor 

(A. 102) 

(A. 103) 

and I denotes the identity tensor. 

DIfferentrating (A.96) and employing (A.lO1) results rn 

. 
2’ + ,-‘@F, = x”2 i 3@F2 (A. 104) 

Equatron (A.104) IS, from the foregoing drscusslon, a force-type constraint re- 

lation. It represents the force-type constraint for all the Joints discussed 

in this section. 

Comparlng (A.104) and (A.93)) it is concluded that 

Substituting Into (A.94) and (A.95) and rearranging, resu .ts in 

--/ r2 
V’ = ?,A*, j n, = -+q 1 

The general solution for T, is clearly 

(A. 105) 

(A. 106) 



l 

. 

The compatibility re 

(A.105): 

lations are obtained by eliminating < from the equat ions 

-/ *2 
“f 

-2 = +wf;f , r-7! = ;;i @C, 1 (A. 107) 

Clearly, in accord with Lemma 2, (A.106) in conJunction with (A.107) implies and 

is implied by (A. 105) . 

In the formulation of the Calspan model, there are four vector un- 

knowns, f,‘, F,‘, 5,’ ,Tj,’ , corresponding to the ball Joint. Since the compata- 

bility relations, (4.134), in conjunction with the constraint relation, (A-104), 

constitute four vector equations, the number of unknowns. In the Lagrange-multi- 

plier formulation there is one constraint-induced unknown (namely 7, ) and our 

corresponding constraint equation,(namely (A.104)). Again, the number of equations 

is equal to the number of unknowns. 

The relation (A.96) is employed as an initial condition. In principle, 

the satisfaction of (A.1043 would insure the satisfaction of (A.96) for all times t. 

However, it has been found that because of accumulated computer-round-off-errors, 

the employment of (A.104) in the computations does not insure the satisfaction of 

(A. 96) for all t . For this reason, both (A.96) and (A. 104) are employed in the 

computations, but not in a redundant manner. In particular, (4.104) is employed 

with (4.107) and the differential equations to solve for s;‘, 5 and 5 . (4.96) 1s 

then employed to obtain ‘;7’ , This procedure insures the satisfaction of (A.96) 

for all times, f . A parallel procedure is employed when there are more than 

t\bo bodies and more than one Joint. 

Since the ball Joint is completely flexible, it has no torque-type 

constraint. 
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A 2.4 2 The Locked Joint 

The locked Joint 1s a joint that has seized or frozen so that it has 

zero degrees of rotational freedom. It has several uses In the Calspan Model, 

lncludlng the representation of a human joint which is locked due to muscle ex- 

ertlon. 

The force-type constraint relation for the locked joint is, as already 

lmplled, the same as for the ball joint. Since the locked joint has no rotation- 

al degrees of freedom, It forces the equality of the angular velocities of bodies 

1 and 2. Therefore, the torque-type constraint for the locked joint may be ex- 

pressed 

;/ -2 =W 

(A. 108) 

To verify that (A.108) and (A.104) adequately describe the locked Joint, it 1s 

observed that the rank of the system (A. 108) and (A. 104)) when consldered as ar 

equation In the unknowns 2’ and z’ , 1s SlX. Thus, (A.108) and (A.104) re- 

move all SIX degrees of freedom in the motion of body 2 relative to the coordl- 

nate system of body 1. In other words, the two bodies behave as a single rigid 

body. 

Comparing (A.108) and (A.93), it 1s concluded that 

6; = 6; = 0 

A; 2 - =-A, - 1 

Thus, the constraint forces corresponding to (A.108) are zero, and (A.95) be- 

comes. 

(A. 109) 

Eliminating 1,results in the compatlblllty relatron 

(A. 110) 
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There are, $01 t’le Calspan formulation, the two unknown constraint torques 6: 
-= 

and nz These can be ellmlnated from the equations of motion by employing 

(4.110) and (4.108) 

A 2 4.3 The Hinge Joint 

The hinge Joint has a srngle pin, the orientation of which can be de- 

noted by the unit vector . Since the pin 1s rlgldly oriented relative to 

body 1 and to body 2, It must rotate with each body. Therefore, in parallelism 

with the relations (A.lOO) and (A.99), one can put 

where 

$1 = s”’ . $0 

1 
- ̂h, 
- h”, 

(A. 111) 

A8 A# L 

Clearly, h, and Ir, are constant vectors. The fundamental constraint 1s the 

satisfaction of (A. 111). From the time derlvatlves of the relations m (A.lll), 

one concludes 

(A. 112) 

Equation (A.112) 1s the torque-type constraint relation for the hinge Joint. 

Comparlng (A.112) and (A.93)) it is concluded that 

(A. 113) 
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and the expressrons for the constraint torques in (A.95) become 

(A.114) 

clearly, (A.114) implies 

--I -2 
*2 +*2 = 0 

-I 
“2 -8, = 0 I 

(A.115) 

To obtarn the solution for &, one can take the cross product of /r: and the 

second of the relations (A. 114) : 

&%s;.: = ;+ a 62 0 t,) 

= 72 - h”, * 7-2 h^, 

or rearranging 

(A.1161 

But, (A.114) lmplres that 2 IS ambiguous to within an arbitrary multiple of 

/;I . This fact and (9.116) lead to 

c 
as the general solution for <, . 

(arbitrary a) (A.117) 

Substltutrng (A.117) into the second of the relations (A.114) 

a2 
n3 = (Z, a 77; f a$ ) QD ;, 

-2 = nz - ;, 7-q 

which reduces to an ldentlty by virtue of the compatlblllty relations (A.115). 

Thus, (A.115) In conJunctlon with (A. 117)) imply (A.114) 

This example 1s the first in which the solution for x 1s ambiguous. 

The ambrgurty results from redundancy In the constraint relation (A.112). 
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This relation only constrains (i5,-za)to be paralled to h: , so the 

rank of the matrrx for the relation 1s two. On the other hand, the relation 

corresponds to three component equations and Tzhas three components. In the 

Lagrange-multlpller formulation, the amblgulty In xa could be removed by an 

addltlonal constraint such as 

;ii ;, = a 

which can be satlsfled wlthln the arbltrarlness of the solution in (A.117). 

Turning to a conslderatlon of the formulation rn the Calspan Model, 

there are two vector unknowns, $ and Fz’, which result from the torque-type 

constraint. But the rank of the matrix of the system composed of the constraint 

relation (A.112) In conJunction with the compatablllty relations (A.115) 1s 

SlX. This rank is the same as the rank of two non-redundant vector equatrons. 

Therefore, the equations of motion can be solved wlthout amblgulty. 

A 2.4.4 The Universal Joint 

The double-trunlon universal Joint has two hinge pins, of whrch the 

axis of one 1s rigidly oriented relative to body 1, and the axls of the other 1s 

rlgldly orlented relative to body 2. The only rotatlonal constraint In the 

Joint is that the two hinge pins are always perpendicular. This constraint can 

be expressed by the relation 

h^, z, = 0 
(A.118) 

where 4 1s a unrt vector in the direction of the pin which 1s rlgldly orlented 

relative to body j, (1~1,~). 

Relations slmllar to (A.lll) can be introduced to express the orlen- 

tatrons of < and iz. Differentiating (A.118) with respect to t results In 

(A.1 19) 
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which is a scalar constraint relation. It is equivalent to the vector con- 

straint relation 

(A. 120) 

Comparing (A. 120) and (A.93)) it is concluded that 

so (A.93) becomes 

(A. 121) 

If Tr 4’1s replaced by the scalar Lagrange multiplier X, , the relations (A. 1 !I) 

are identical to those that would be obtained from the approach which is formal- 

ized in (A.85) and (A.86). It is of academic interest that the vector Tz may 3e 

retained and the ambiguity removed by the supplementary relation 

(A. 122) 

which restricts TL within the range of the general solution of (A.121) for 3, . 

Since (A.122) has a rank of two and (E.119) has a rank of one, these two re- 

lations do indeed remove ambiguities in xL in the solution of the equations of 

motion. 

The equations (A.121) imply the compatibility relations. 

The general solution to (A.121) for zz is 

(A. 123) 

(A. 124) 



bhere a 1s arbitrary. To prove this, (~.124) is substituted Into (A.121). The 

resulting relation 

1s Implied by (~.123). Thus (A.124) and (A.123) imply (A. 121). It will be ob- 

served that the expression (4.124) can be slmpllfled since, from (A.118)) 

In the Calspan formulation, the torque-type constraint in (A.119) leads 

to two unknown constraint torques, zz’ and ??=’ . Since (A.119) has a rank of one, 

and the total rank of the relations (A.123) is five, the equations of motion can 

be solved unambiguously. 


